82 research outputs found

    iPSC-based modeling of RAG2 severe combined immunodeficiency reveals multiple T cell developmental arrests

    Get PDF
    RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7(-)CD5(-) to CD4(+)CD8(+). The impaired differentiation was accompanied by an increase in CD7(-)CD56(+)CD33(+) natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks

    iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests

    Get PDF
    RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7−CD5− to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7−CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks.In this article, Mikkers

    Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures

    Get PDF
    The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA) to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method) and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures

    Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells

    Get PDF
    Purpose: Targeting nonspecific, tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CART) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However, decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here, we demonstrate the prime importance of the type of intracellular signaling on the function of lowaffinity CAR-T cells. Experimental Design: We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma-associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CAR-T cells in vitro and in vivo. Results: We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low-affinity (K d < 1.9 × 10 -6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CAR-T cells with superior proliferative capacity, preservation of a central memory phenotype, and significantly improved in vivo antitumor function, while preserving their ability to discriminate target antigen density. Conclusions: A combinatorial costimulatory design allows the use of very low-affinity binding domains (K d < 1 mmol/L) for the construction of safe but also optimally effective CAR-T cells. Thus, very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs

    A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization

    Get PDF
    Chimeric antigen receptors (CARs) can effectively redirect cytotoxic T cells toward highly expressed surface antigens on tumor cells. The low expression of several tumor-associated antigens (TAAs) on normal tissues, however, hinders their safe targeting by CAR T cells due to on-target/off-tumor effects. Using the multiple myeloma (MM)-associated CD38 antigen as a model system, here, we present a rational approach for effective and tumor-selective targeting of such TAAs. Using “light-chain exchange” technology, we combined the heavy chains of two high-affinity CD38 antibodies with 176 germline light chains and generated ∼124 new antibodies with 10- to >1,000-fold lower affinities to CD38. After categorizing them into three distinct affinity classes, we incorporated the single-chain variable fragments of eight antibodies from each class into new CARs. T cells carrying these CD38-CARs were extensively evaluated for their on-tumor/off-tumor cytotoxicity as well as CD38-dependent proliferation and cytokine production. We identified CD38-CAR T cells of ∼1,000- fold reduced affinity, which optimally proliferated, produced Th1-like cytokines, and effectively lysed CD382+ MM cells, but spared CD38+ healthy hematopoietic cells in vitro and in vivo. Thus, this systematic approach is highly suitable for the generation of optimal CARs for effective and selective targeting of TAAs

    Pharmacokinetics and clinical activity of very low-dose alemtuzumab in transplantation for acute leukemia

    No full text
    The optimal dose of in vivo-administrated alemtuzumab in the allogeneic transplantation setting has not been defined. We report our experience on 37 patients with high-risk diseases, mainly acute leukemia (AML 23, ALL 10 patients), who underwent sibling (49%) or unrelated (51%) PBSCT (35 patients), and received a total dose of only 10-20 mg Campath-1H as part of the conditioning, and post-transplant CYA without MTX. The neutrophil and especially the platelet engraftment were rapid. There were only two grade III-IV acute GvHD cases, which occurred in unrelated transplants in the Campath-10 cohort. Chronic GvHD developed in six cases (17%) and was limited to skin in five of them. After a median follow-up of 371 days (59-1191), 70% patients are alive and in CR (Karnofsky 100%), and 11 died (TRM n=6, relapse n=5). From the five patients relapsed, three were at advanced stage at transplant and four underwent sibling HCT with the higher (20 mg) alemtuzumab dose. With the 10 mg alemtuzumab schedule (5 mg/day at days -2 and -1) we achieve at day of transplantation low but still lymphotoxic alemtuzumab serum concentrations (176 ng/mL), whereas levels declined fast thereafter, and at engraftment nearly no Campath antibody remained in the patient's serum

    Endometriosis is a risk factor for recurrent pelvic inflammatory disease after tubo-ovarian abscess surgery.

    No full text
    PURPOSE To evaluate the clinical outcomes and prognosis of patients undergoing laparoscopic surgery for tubo-ovarian abscess (TOA) and identify risk factors for pelvic inflammatory disease (PID) recurrence. METHODS We conducted a retrospective cohort analysis including 98 women who underwent laparoscopic surgery for TOA at the Department of Obstetrics and Gynecology at the Bern University Hospital from January 2011 to May 2021. The primary outcome studied was the recurrence of PID after TOA surgery. Clinical, laboratory, imaging, and surgical outcomes were examined as possible risk factors for PID recurrence. RESULTS Out of the 98 patients included in the study, 21 (21.4%) presented at least one PID recurrence after surgery. In the univariate regression analysis, the presence of endometriosis, ovarian endometrioma, and the isolation of E. coli in the microbiology cultures correlated with PID recurrence. However, only endometriosis was identified as an independent risk factor in the multivariate analysis (OR (95% CI): 9.62 (1.931, 47.924), p  45 days after TOA surgery) required 3 or more additional interventions until cured. CONCLUSION Endometriosis is a significant risk factor for PID recurrence after TOA surgery. Optimized therapeutic strategies such as closer postsurgical follow-up as well as longer antibiotic and hormonal therapy should be assessed in further studies in this specific patient population
    corecore