71 research outputs found
Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process
International audienc
Probing neutron-hidden neutron transitions with the MURMUR experiment
MURMUR is a new passing-through-walls neutron experiment designed to
constrain neutron/hidden neutron transitions allowed in the context of
braneworld scenarios or mirror matter models. A nuclear reactor can act as a
hidden neutron source, such that neutrons travel through a hidden world or
sector. Hidden neutrons can propagate out of the nuclear core and far beyond
the biological shielding. However, hidden neutrons can weakly interact with
usual matter, making possible for their detection in the context of low-noise
measurements. In the present work, the novelty rests on a better background
discrimination and the use of a mass of a material - here lead - able to
enhance regeneration of hidden neutrons into visible ones to improve detection.
The input of this new setup is studied using both modelizations and
experiments, thanks to tests currently performed with the experiment at the BR2
research nuclear reactor (SCKCEN, Mol, Belgium). A new limit on the
neutron swapping probability p has been derived thanks to the measurements
taken during the BR2 Cycle 02/2019A: at 95% CL.
This constraint is better than the bound from the previous passing-through-wall
neutron experiment made at ILL in 2015, despite BR2 is less efficient to
generate hidden neutrons by a factor 7.4, thus raising the interest of such
experiment using regenerating materials.Comment: 15 pages, 8 figures, final version, accepted for publication in
European Physical Journal
Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications
Brucella spp. and Sinorhizobium meliloti are alphaproteobacteria that share not only an intracellular lifestyle in their respective hosts, but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, and detergents). We show that B. melitensis mucR is a functional orthologue of S. meliloti mucR, because it was able to restore the production of succinoglycan in an S. meliloti mucR mutant, as detected by calcofluor staining. Similar to S. meliloti MucR, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts
An implanted 4He target for experiments with radioactive beams
Solid 4He targets were prepared by implantation of He ions of various energies into thin Al foils. The targets were tested using the proton Rutherford backscattering (RBS) technique. The tests showed that a considerable amount of the implanted He atoms stays in the host foils for a long time after the implantation. A possibility of using the He-implanted targets in experiments with radioactive beams is demonstrated. Further steps to increase He amount in the implanted targets are discussed
- âŠ