335 research outputs found

    The absolute radiometric calibration of the advanced very high resolution radiometer

    Get PDF
    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California

    The absolute radiometric calibration of the advanced very high resolution radiometer

    Get PDF
    The measurement conditions are described for an intensive field campaign at White Sands Missile Range for the calibration of the AVHRRs on NOAA-9, NOAA-10 and NOAA-11, LANDSAT-4 TM and SPOT. Three different methods for calibration of AVHRRs by reference to a ground surface site are reported, and results from these methods are compared. Significant degradations in NOAA-9 and NOAA-10 AVHRR responsivities occurred since prelaunch calibrations were completed. As of February 1988, degradations in NOAA-9 AVHRR responsivities were on the order of 37 percent in channel and 41 percent in channel 2, and for the NOAA-10 AVHRR these degradations were 42 and 59 percent in channels 1 and 2, respectively

    The absolute radiometric calibration of the advanced very high resolution radiometer

    Get PDF
    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4

    The absolute radiometric calibration of the advanced very high resolution radiometer

    Get PDF
    The early results of an absolute radiometric calibration of the NOAA-9 AVHRR sensor indicate significant degradations in the response of bands 1 and 2 compared to prelaunch values. The results are currently in the process of being verified and it may be that refinements of the methodology will be in order as additional data sets are analyzed. The LANDSAT TM calibration used in this approach is known to be very precise and the Herman radiative transfer code, supplemented by the 5-S code for gaseous transmission, is reliable as well. The extent to which other steps in the analysis procedure give rise to uncertainties in the results is currently under investigation. Particular attention is being given to the geometric matching of the AVHRR and TM imagery, as well as to the spectral redistribution procedure. By taking advantage of a reasonably precise calibration of TM imagery acquired on the same day as the AVHRR data at White Sands, a promising approach to the in-orbit calibration of AVHRR sensors is being developed. Current efforts involve primarily the examination of additional test cases and the investigation of possible simplifications in the procedure through judicious use of atmospheric models

    Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo

    Get PDF
    We present the first in vivo study of the long-term fate and potential of early-migrating and late-migrating mesencephalic neural crest cell populations, by performing isochronic and heterochronic quail-to-chick grafts. Both early- and late-migrating populations form melanocytes, neurons, glia, cartilage and bone in isochronic, isotopic chimeras, showing that neither population is lineage-restricted. The early-migrating population distributes both dorsally and ventrally during normal development, while the late-migrating population is confined dorsally and forms much less cartilage and bone. When the late-migrating population is substituted heterochronically for the early-migrating population, it contributes extensively to ventral derivatives such as jaw cartilage and bone. Conversely, when the early-migrating population is substituted heterochronically for the late-migrating population, it no longer contributes to the jaw skeleton and only forms dorsal derivatives. When the late-migrating population is grafted into a late-stage host whose neural crest had previously been ablated, it migrates ventrally into the jaws. Thus, the dorsal fate restriction of the late-migrating mesencephalic neural crest cell population in normal development is due to the presence of earlier-migrating neural crest cells, rather than to any change in the environment or to any intrinsic difference in migratory ability or potential between early- and late-migrating cell populations. These results highlight the plasticity of the neural crest and show that its fate is determined primarily by the environment

    On the Slope-Aspect Correction of Multispectral Scanner Data

    Get PDF
    The effects of topography on the radiometric properties of multispectral scanner (MSS) data are examined in the context of the remote sensing of forests in mountainous regions. The two test areas considered for this study are located in the coastal mountains of British Columbia, one at the Anderson River near Boston Bar and the other at Gun Lake near Bralorne. The predominant forest type at the former site is Douglas fir, whereas forest types at the latter site are primarily lodgepole pine and ponderosa pine. Both regions have rugged topography, with elevations ranging from 275 to 1500 metres above sea level at Anderson River and from 670 to 1990 metres above sea level at Gun Lake. Lambertian and non-Lambertian illumination corrections are formulated, taking into account atmospheric effects as well as topographic variations. Terrain slope and aspect values are determined from a digital elevation model and atmospheric parameters are obtained from a model atmosphere computation for the solar angles and spectral bands of interest. In the Lambertian approximation, if sky irradiance and atmospheric path radiance are neglected, one is left with a cosine correction analogous to the one which has been used extensively to carry out illumination transformations of images of horizontal terrain. However, this extension of the simple cosine correction to the case of sloped terrain is shown to be inadequate, especially for larger angles of incidence. Attempts are also made to remove the effect of topography by means of semi-empirical functions primarily based on cosines of the incident and reflected illumination angles. In this vein, correlations and linear regressions between topographic parameters (such as elevation, slope, aspect, incidence angle, reflection angle) and MSS radiance values are investigated for the different forest types under consideration at each site. The analysis encompasses multitemporal Landsat MSS data at a resolution of 50 metres and 11 channel airborne MSS at resolutions of 20 and 50 metres. Slope aspect correction algorithms for both of these types of data are implemented in software on the image analysis system at the Canada Centre for Remote Sensing. Geometric rectification is also a prerequisite in order to relate image geometry to the map coordinates on which the digital terrain data are based. A special technique involving flight line modelling is used to accomplish this in the case of aircraft data since prior knowledge of the terrain elevation is needed for each image pixel in order to establish an undistorted transformation. Feature selection based on divergence criteria indicates that terrain parameters compare favourably with the MSS data in terms of ability to distinguish between forest classes. However, maximum likelihood classification results for MSS data, corrected for slope-aspect effects using a variety of functions, show little or no significant improvement over results obtained using uncorrected data. This outcome is discussed with a view to achieving a better understanding of both the physical principles and the image processing methodologies involved

    Impact of differences in the solar irradiance spectrum on surface reflectance retrieval with different radiative transfer codes

    Get PDF
    Surface reflectance retrieval from imaging spectrometer data as acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has become important for quantitative analysis. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes such as 5S and MODTRAN2 play an increasing role for removal of scattering and absorption effects of the atmosphere. Accurate knowledge of the exo-atmospheric solar irradiance (E(sub 0)) spectrum at the spectral resolution of the sensor is important for this purpose. The present study investigates the impact of differences in the solar irradiance function, as implemented in a modified version of 5S (M5S), 6S, and MODTRAN2, and as proposed by Green and Gao, on the surface reflectance retrieved from AVIRIS data. Reflectance measured in situ is used as a basis of comparison

    3D atom probe tomography of swift heavy ion irradiated multilayers

    Get PDF
    International audienceNanometer scale layered systems are well suited to investigate atomic transport processes induced by high-energy electronic excitations in materials, through the characterization of the interface transformation. In this study, we used the atom probe technique to determine the distribution of the different elements in an (amorphous-Fe2_2Tb 5 nm/hcp-Co 3 nm)20_{20} multilayer before and after irradiation with Pb ions in the electronic stopping power regime. Atom probe tomography is based on reconstruction of a small volume of a sharp tip evaporated by field effect. It has unique capabilities to characterize internal interfaces and layer chemistry with sub-nanometer scale resolution in three dimensions. Depth composition profiles and 3D element mapping have been determined, evidencing for asymetric interfaces in the as-deposited sample, and very efficient Fe-Co intermixing after irradiation at the fluence 7×10127\times10^{12} ion cm2^{-2}. Estimation of effective atomic diffusion coefficients after irradiation suggests that mixing results from interdiffusion in a molten track across the interface in agreement with the thermal spike model

    AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods

    Get PDF
    Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard

    Development patterns of an isolated oligo-mesophotic carbonate buildup, early Miocene, Yadana field, offshore Myanmar

    Get PDF
    The development history of an oligo-mesophotic, early Miocene, isolated carbonate system (>160 m in thickness), forming the uppermost part of the Oligo-Miocene Yadana buildup (northern Andaman Sea), has been evidenced from the integration of sedimentological core studies from 4 wells (cumulated core length: 343 m), well correlations, seismic interpretation and analysis of the ecological requirements of the main skeletal components. Three types of carbonate factory operated on the top of the platform, depending on water-depth, turbidity and nutrient level: (1) a scleractinian factory developing under mesophotic conditions during periods of high particulate organic matter supplies, (2) an echinodermal factory occupying dysphotic to aphotic area of the platform coevally with the scleractinian factory, (3) a large benthic foraminiferal-coralline algal factories prevailing under oligo-mesophotic and oligo-mesotrophic conditions. The limited lateral changes in facies between wells, together with the seismic expression of the Yadana buildup, suggest deposition on a flat-topped shelf. Carbonate production and accumulation on the Yadana platform was mainly controlled by light penetration, nutrient content and hydrodynamic conditions. Scleractinian-rich facies resulted from transport of coral pieces derived from mesophotic environments (mounds?) and deposited in deeper, low light, mud-rich environments in which lived abundant communities of suspension feeders such as ophiuroids. Changes in monsoonal intensity, terrestrial runoff from the Irrawaddy River, upwelling currents and internal waves activity during the early Miocene are likely responsible for significant variations in water turbidity and nutrient concentration in the Andaman Sea, thus promoting the development of an oligo-mesophotic, incipiently drowned platform
    corecore