1,153 research outputs found

    Examining the Effects of Passenger Conversation on Older Adult Driving

    Get PDF
    Older adults have impaired driving performance compared to other age groups, and auditory stimuli has adverse effects on driving performance (Karthaus & Falkenstein, 2016). Therefore, the purpose of this study was to expand knowledge of driving and passenger conversation within the older adult population. Participants (n = 17) completed a drive of 7.8 miles on a driving simulator twice; once without conversation and again with conversation. Both drives used the same simulated driving tasks to examine driving performance with and without conversation. Participants exhibited poorer driving performance from the first drive without conversation to the second drive with conversation, specifically in time over the speed limit and average speed. Descriptive statistics also indicated that participants demonstrated poorer driving performance between the first drive and the second drive. Taken together, these findings indicated that passenger conversation negatively impacted driving performance in older adults. Therefore, older adults should be cautious about engaging in conversation while driving, as it can impair their safety

    Width-Increased Dual-Pump Enhanced Coherent Anti-Stokes Raman Spectroscopy (WIDECARS)

    Get PDF
    WIDECARS is a dual-pump coherent anti-Stokes Raman Spectroscopy technique that is capable of simultaneously measuring temperature and species mole fractions of N2, O2, H2, C2H4, CO, and CO2. WIDECARS is designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures. The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature

    CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    Get PDF
    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed

    Real Time Photon-Counting Receiver for High Photon Efficiency Optical Communications

    Get PDF
    We present a scalable design for a photon-counting ground receiver based on superconducting nanowire single photon detectors (SNSPDs) and field programmable gate array (FPGA) real-time processing for applications to space-to-ground photon starved links, such as the Orion EM-2 Optical Communication Demonstration (O2O), and future deep space or low transmitter power missions. The receiver is designed to receive a serially concatenated pulse position modulation (SCPPM) waveform, which follows the Consultative Committee for Space Data Systems (CCSDS) Optical Communications Coding and Synchronization Red Book standard. The receiver design uses multiple individually fiber coupled, 80% detection efficiency commercial SNSPDs in parallel to scale to a required data rate, and is capable of achieving data rates up to 528 Mbps. For efficient fiber coupling from the telescope to the array of parallel detectors that can be scaled both to telescope aperture size and the number of detectors, we use either a single mode fiber (SMF) photonic lantern or a few-mode fiber (FMF) photonic lantern. In this paper we give an overview of the receiver system design, the characteristics of the photonic lanterns, the performance of the SNSPDs, and system level tests. We show that 40 Mbps can be received using a single SNSPD, and discuss aspects for scaling to higher data rates

    Performance and Characterization of a Modular Superconducting Nanowire Single Photon Detector System for Space-to-Earth Optical Communications Links

    Get PDF
    Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases

    Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Get PDF
    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes

    Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    Get PDF
    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow

    Antibody capture radioimmunoassay for anti-rubella IgM

    Get PDF
    An M-antibody capture radioimmunoassay (MACRIA) for anti-rubella IgM was developed. Under optimum conditions positive serum specimens bound up to 20 times as much radioactivity as negative specimens. Positive reactions were expressed in arbitrary units/ml by comparison with a calibration curve derived from results obtained with dilutions of a standard serum. The specificity of the assay was confirmed by testing IgM and IgG rich fractions of positive sera. One hundred and forty specimens from blood donors, patients whose sera contained rheumatoid factor and patients with acute, non-rubella, virus infections were tested by MACRIA. No significant non-specific reactions were detected. Paired sera from acute rubella (25 patients) and individual sera from suspected rubella (69 patients) were tested for anti-rubella IgM by MACRIA and by haemagglutination inhibition following sucrose-density-gradient fractionation. There was close agreement between the two methods. The capture assay was more sensitive and could be used to detect the weak IgM response in women given RA 27/3 vaccine. After the natural infection, the MACRIA was strongly positive for two months and remained weakly so for a further two months. Repeat testing of sera demonstrated good reproducibility of the assay. MACRIA proved a simple, sensitive and specific test for anti-rubella IgM and compared favourably with currently used technique

    Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center

    Get PDF
    This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation

    Optical Software Defined Radio Transmitter Extinction Ratio Enhancement with Differential Pulse Carving

    Get PDF
    A unique challenge in the development of a deep space optical software defined radio (SDR) transmitter is the optimization of the extinction ratio (ER). For a Mars to Earth optical link, an ER approaching 40dB may be necessary. However, a high ER can be difficult to achieve at the low PPM orders and narrow slot widths required for high data rates. The quality of the digital signal transmitted by the SDR does not meet the amplitude and timing characteristics needed by an analog optical modulator. The conflicting implementation constraints of these two fundamentally different systems, the digital SDR and analog optical modulator, can make achieving the required ER very difficult. In this paper, the causes of fidelity loss at the interface between the SDR and optical modulator are discussed. The SDR signal quality requirements are derived and explored. It is shown that increasing the SDR signal quality enough to meet these requirements is impractical to implement due to bandwidth limitations of electronic components as well as Field Programmable Gate Array (FPGA) clock speed constraints. A novel optical modulation architecture based on low-voltage differential signaling and dual Mach-Zehnder modulators is presented which reduces the signal quality requirements on the SDR and increases the system ER
    • …
    corecore