6,604 research outputs found

    First results on radiation damage in PbWO4 crystals exposed to a 20 GeV/c proton beam

    Full text link
    We have exposed seven full length production quality crystals of the electromagnetic calorimeter (ECAL) of the CMS detector to a 20 GeV/c proton beam at the CERN PS accelerator. The exposure was done at fluxes of 10**12 p/cm**2/h and 10**13 p/cm**2/h and integral fluences of 10**12 p/cm**2 and 10**13 p/cm**2 were reached at both rates. The light transmission of the crystals was measured after irradiation and suitable cooling time for induced radioactivity to decrease to a safe level. First results of these measurements are shown. The possible damage mechanisms are discussed and simulations based on one possible model are presented. The implications for long-term operation of CMS are discussed and it is shown that in the whole barrel and at least most of the ECAL endcap hadron damage alone - even if cumulative - should not cause the crystals to fail the CMS specification of an induced absorption coefficient muIND < 1.5 /m during the first 10 years of LHC operation.Comment: 5 pages, to be published in Proc. ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como, Italy, 6 to 10 October 2003

    Studies of the effect of charged hadrons on lead tungstate crystals

    Full text link
    Scintillating crystals are used for calorimetry in several high-energy physics experiments. For some of them, performance has to be ensured in difficult operating conditions, like a high radiation environment, very large particle fluxes and high collision rates. Results are presented here from a thorough series of measurements concerning mainly the effect of charged hadrons on lead tungstate. It is also shown how these results can be used to predict the effect on crystals due to a given flux of particles.Comment: Submitted to Proceedings Calor 2008 - XIII International Conference on Calorimetry in High Energy Physics, Pavia (Italy) 26-30 May 2008. To be published in Journal of Physics: Conference Series (8 pages, 16 figures

    Crystals for high-energy calorimetry in extreme environments

    Full text link
    Crystals are used as a homogeneous calorimetric medium in many high-energy physics experiments. For some experiments, performance has to be ensured in very difficult operating conditions, like a high radiation environment, very large particle fluxes, high collision rates, placing constraints on response and readout time. An overview is presented of recent achievements in the field, with particular attention given to the performance of Lead Tungstate (PWO) crystals exposed to high particle fluxes.Comment: To be published in Proc. of the Meeting of the Division of Particles and Fields of the American Physical Society, DPF2004 (Riverside, USA, August 26th to 31st, 2004

    The role of balloon sinuplasty in the treatment of sinus headache

    Get PDF
    Headache attributed to rhinosinusitis, commonly called sinus headache (SH), is probably one of the most prevalent secondary headaches. The purpose of our study was to examine further sinus headache comparing the effect of conventional functional endoscopic sinus surgery and the balloon sinuplasty

    Proof-of-principle of a new geometry for sampling calorimetry using inorganic scintillator plates

    Full text link
    A novel geometry for a sampling calorimeter employing inorganic scintillators as an active medium is presented. To overcome the mechanical challenges of construction, an innovative light collection geometry has been pioneered, that minimises the complexity of construction. First test results are presented, demonstrating a successful signal extraction. The geometry consists of a sampling calorimeter with passive absorber layers interleaved with layers of an active medium made of inorganic scintillating crystals. Wavelength-shifting (WLS) fibres run along the four long, chamfered edges of the stack, transporting the light to photodetectors at the rear. To maximise the amount of scintillation light reaching the WLS fibres, the scintillator chamfers are depolished. It is shown herein that this concept is working for cerium fluoride (CeF3_3) as a scintillator. Coupled to it, several different types of materials have been tested as WLS medium. In particular, materials that might be sufficiently resistant to the High-Luminosity Large Hadron Collider radiation environment, such as cerium-doped Lutetium-Yttrium Orthosilicate (LYSO) and cerium-doped quartz, are compared to conventional plastic WLS fibres. Finally, an outlook is presented on the possible optimisation of the different components, and the construction and commissioning of a full calorimeter cell prototype is presented.Comment: Submitted to Proceedings CALOR 2014, the 16th International Conference on Calorimetry in High-Energy Physics, Giessen (Germany) 6 - 11 April 2014. To be published in Journal of Physics: Conference Series (10 pages, 15 figures

    Constraints on Parity-Even Time Reversal Violation in the Nucleon-Nucleon System and Its Connection to Charge Symmetry Breaking

    Full text link
    Parity-even time reversal violation (TRV) in the nucleon-nucleon interaction is reconsidered. The TRV ρ\rho-exchange interaction on which recent analyses of measurements are based is necessarily also charge-symmetry breaking (CSB). Limits on its strength gˉρ\bar{g}_\rho relative to regular ρ\rho-exchange are extracted from recent CSB experiments in neutron-proton scattering. The result gˉρ≀6.7×10−3\bar{g}_\rho\le 6.7\times 10^{-3} (95% CL) is considerably lower than limits inferred from direct TRV tests in nuclear processes. Properties of a1a_1-exchange and limit imposed by the neutron EDM are briefly discussed.Comment: RevTex, 8 pages. Factor ten error in cited neutron EDM corrected, discussion and two references adde

    Photochemically re-bridging disulfide bonds and the discovery of a thiomaleimide mediated photodecarboxylation of C-terminal cysteines

    Get PDF
    Described in this work is a novel method for photochemically manipulating peptides and proteins via the installation of cysteine-selective photoactive tags. Thiomaleimides, generated simply by the addition of bromomaleimides to reduced disulfide bonds, undergo [2 + 2] photocycloadditions to reconnect the crosslink between the two cysteine residues. This methodology is demonstrated to enable photoactivation of a peptide by macrocyclisation, and reconnection of the heavy and light chains in an antibody fragment to form thiol stable conjugates. Finally we report on an intriguing thiomaleimide mediated photochemical decarboxylation of C-terminal cysteines, discovered during this study

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Test beam results for an upgraded forward tagger of the L3 experiment at LEP II

    Get PDF
    We have tested new scintillator modules with silicon photodiode readout for the upgraded Active Lead Rings (ALR) of the L3 detector at LEP II. Results are presented from data recorded in muon and electron test beams with particular emphasis on the light production and collection as a function of the particle impact position on the scintillator modules. The results from the beam test data will be used for the design of the readout and trigger electronics in conjunction with the required ALR performance as an electron tagger and beam background monitor at LEP II
    • 

    corecore