346 research outputs found

    Chagas' disease and AIDS

    Get PDF
    Chagas' disease caused by Trypanosoma cruzi is an opportunistic infection in the setting of HIV/AIDS. Some individuals with HIV and chronic T. cruzi infection may experience a reactivation, which is most commonly manifested by meningoencephalitis. A reactivation myocarditis is the second most common manifestation. These presentations may be difficult to distinguish from toxoplasmosis in individuals with HIV/AIDS. The overlap of HIV and Trypanosoma cruzi infection occurs not only in endemic areas but also in non-endemic areas of North America and Europe where the diagnosis may be even more difficult. The pathological features, diagnosis and the role of cytokines in the pathogenesis of the disease are discussed

    Trypanosoma cruzi Utilizes the Host Low Density Lipoprotein Receptor in Invasion

    Get PDF
    Trypanosoma cruzi, an intracellular protozoan parasite that causes Chagas disease in humans and results in the development of cardiomyopathy, is a major health problem in endemic areas. This parasite can invade a wide variety of mammalian cells. The mechanisms by which these parasites invade their host cells are not completely understood. Our study highlights, for the first time, that the Low Density Lipoprotein receptor (LDLr) is important in the invasion and the subsequent fusion of the parasitophorous vacuole with host lysosomes. We demonstrate that T. cruzi directly binds to LDLr, and inhibition or disruption of LDLr significantly decreases parasite entry. Additionally, we have determined that this cross-linking triggers the accumulation of LDLr and phosphotidylinositol phosphates in coated pits, which initiates a signaling cascade that results in the recruitment of lysosomes, possibly via the sorting motif in the cytoplasmic tail of LDLr, to the site of adhesion/invasion. Studies of infected CD1 mice demonstrate that LDLs accumulate in infected heart and that LDLr co-localize with internalized parasites. Overall, this study demonstrates that LDLr and its family members, engaged mainly in lipoprotein transportation, are also involved in T. cruzi entry into host cells and this interaction likely contributes to the progression of chronic cardiomyopathy

    Aspirin Treatment of Mice Infected with Trypanosoma cruzi and Implications for the Pathogenesis of Chagas Disease

    Get PDF
    Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Chagas Disease in the New York City Metropolitan Area.

    Get PDF
    Background:Chagas disease, caused by the parasite Trypanosoma cruzi, once considered a disease confined to Mexico, Central America, and South America, is now an emerging global public health problem. An estimated 300 000 immigrants in the United States are chronically infected with T. cruzi. However, awareness of Chagas disease among the medical community in the United States is poor. Methods:We review our experience managing 60 patients with Chagas disease in hospitals throughout the New York City metropolitan area and describe screening, clinical manifestations, EKG findings, imaging, and treatment. Results:The most common country of origin of our patients was El Salvador (n = 24, 40%), and the most common detection method was by routine blood donor screening (n = 21, 35%). Nearly half of the patients were asymptomatic (n = 29, 48%). Twenty-seven patients were treated with either benznidazole or nifurtimox, of whom 7 did not complete therapy due to side effects or were lost to follow-up. Ten patients had advanced heart failure requiring device implantation or organ transplantation. Conclusions:Based on our experience, we recommend that targeted screening be used to identify at-risk, asymptomatic patients before progression to clinical disease. Evaluation should include an electrocardiogram, echocardiogram, and chest x-ray, as well as gastrointestinal imaging if relevant symptoms are present. Patients should be treated if appropriate, but providers should be aware of adverse effects that may prevent patients from completing treatment

    Bradykinin B2 Receptors of Dendritic Cells, Acting as Sensors of Kinins Proteolytically Released by Trypanosoma cruzi, Are Critical for the Development of Protective Type-1 Responses

    Get PDF
    Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R−/− mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R−/− heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-γ-producing CD4+ and CD8+ T cells in the spleen of B2R−/− and wild-type mice. However, production of IFN-γ by effector T cells isolated from B2R−/− heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-γ-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R−/− mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R−/− mice was linked to upregulated secretion of IL-17 and TNF-α by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R−/− mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R−/− mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection

    Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection

    Get PDF
    Chagas' disease is caused by infection with the parasite Trypanosoma cruzi. We report that infected, but not uninfected, human endothelial cells (ECs) released thromboxane A2 (TXA2). Physical chromatography and liquid chromatography-tandem mass spectrometry revealed that TXA2 is the predominant eicosanoid present in all life stages of T. cruzi. Parasite-derived TXA2 accounts for up to 90% of the circulating levels of TXA2 in infected wild-type mice, and perturbs host physiology. Mice in which the gene for the TXA2 receptor (TP) has been deleted, exhibited higher mortality and more severe cardiac pathology and parasitism (fourfold) than WT mice after infection. Conversely, deletion of the TXA2 synthase gene had no effect on survival or disease severity. TP expression on somatic cells, but not cells involved in either acquired or innate immunity, was the primary determinant of disease progression. The higher intracellular parasitism observed in TP-null ECs was ablated upon restoration of TP expression. We conclude that the host response to parasite-derived TXA2 in T. cruzi infection is possibly an important determinant of mortality and parasitism. A deeper understanding of the role of TXA2 may result in novel therapeutic targets for a disease with limited treatment options

    Chagas Disease in the New York City Metropolitan Area

    Get PDF
    Background Chagas disease, caused by the parasite Trypanosoma cruzi, once considered a disease confined to Mexico, Central America, and South America, is now an emerging global public health problem. An estimated 300 000 immigrants in the United States are chronically infected with T. cruzi. However, awareness of Chagas disease among the medical community in the United States is poor. Methods We review our experience managing 60 patients with Chagas disease in hospitals throughout the New York City metropolitan area and describe screening, clinical manifestations, EKG findings, imaging, and treatment. Results The most common country of origin of our patients was El Salvador (n = 24, 40%), and the most common detection method was by routine blood donor screening (n = 21, 35%). Nearly half of the patients were asymptomatic (n = 29, 48%). Twenty-seven patients were treated with either benznidazole or nifurtimox, of whom 7 did not complete therapy due to side effects or were lost to follow-up. Ten patients had advanced heart failure requiring device implantation or organ transplantation. Conclusions Based on our experience, we recommend that targeted screening be used to identify at-risk, asymptomatic patients before progression to clinical disease. Evaluation should include an electrocardiogram, echocardiogram, and chest x-ray, as well as gastrointestinal imaging if relevant symptoms are present. Patients should be treated if appropriate, but providers should be aware of adverse effects that may prevent patients from completing treatment
    corecore