24 research outputs found

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data

    Get PDF
    BACKGROUND: Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs). METHODS: To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection. RESULTS: Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments. CONCLUSIONS: AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Identification of single nucleotide variants using position-specific error estimation in deep sequencing data.

    Get PDF
    Background Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs).Methods To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection.Results Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments.Conclusions AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve

    Introducing PIONEER: a project to harness big data in prostate cancer research

    Get PDF
    Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe (PIONEER) is a European network of excellence for big data in prostate cancer, consisting of 32 private and public stakeholders from 9 countries across Europe. Launched by the Innovative Medicines Initiative 2 and part of the Big Data for Better Outcomes Programme (BD4BO), the overarching goal of PIONEER is to provide high-quality evidence on prostate cancer management by unlocking the potential of big data. The project has identified critical evidence gaps in prostate cancer care, via a detailed prioritization exercise including all key stakeholders. By standardizing and integrating existing high-quality and multidisciplinary data sources from patients with prostate cancer across different stages of the disease, the resulting big data will be assembled into a single innovative data platform for research. Based on a unique set of methodologies, PIONEER aims to advance the field of prostate cancer care with a particular focus on improving prostate-cancer-related outcomes, health system efficiency by streamlining patient management, and the quality of health and social care delivered to all men with prostate cancer and their families worldwide.Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe (PIONEER) is a European network of excellence for big data in prostate cancer, consisting of 32 private and public stakeholders from 9 countries across Europe. In this Perspectives article, the authors introduce the PIONEER project and describe its aims and plans for ultimately improving prostate cancer care through the use of big data
    corecore