1,031 research outputs found

    Electron-Electron Relaxation Effect on Auger Recombination in Direct Band Semiconductors

    Full text link
    Influence of electron-electron relaxation processes on Auger recombination rate in direct band semiconductors is investigated. Comparison between carrier-carrier and carrier-phonon relaxation processes is provided. It is shown that relaxation processes are essential if the free path length of carriers doesn't exceed a certain critical value, which exponentially increases with temperature. For illustration of obtained results a typical InGaAsP compound is used

    Accurate first principles detailed balance determination of Auger recombination and impact ionization rates in semiconductors

    Full text link
    The technologically important problem of predicting Auger recombination lifetimes in semiconductors is addressed by means of a fully first--principles formalism. The calculations employ highly precise energy bands and wave functions provided by the full--potential linearized augmented plane wave (FLAPW) code based on the screened exchange local density approximation. The minority carrier Auger lifetime is determined by two closely related approaches: \emph{i}) a direct evaluation of the Auger rates within Fermi's Golden Rule, and \emph{ii}) an indirect evaluation, based on a detailed balance formulation combining Auger recombination and its inverse process, impact ionization, in a unified framework. Calculated carrier lifetimes determined with the direct and indirect methods show excellent consistency \emph{i}) between them for nn-doped GaAs and \emph{ii}%) with measured values for GaAs and InGaAs. This demonstrates the validity and accuracy of the computational formalism for the Auger lifetime and indicates a new sensitive tool for possible use in materials performance optimization.Comment: Phys. Rev. Lett. accepte

    ASCA Observations of the Jet Source XTE J1748-288

    Full text link
    XTE J1748-288 is a new X-ray transient with a one-sided radio jet. It was observed with ASCA on 1998/09/06 and 1998/09/26, 100 days after the onset of the radio-X-ray outburst. The spectra were fitted with an attenuated power-law model, and the 2-6-keV flux was 4.6 * 10^{-11} erg s^{-1} cm^{-2} and 2.2 * 10^{-12} on 09/06 and 09/26, respectively. The light curve showed that the steady exponential decay with an e-folding time of 14 days lasted over 100 days and 4 orders of magnitude from the peak of the outburst. The celestial region including the source had been observed with ASCA on 1993/10/01 and 1994/09/22, years before the discovery. In those period, the flux was < 10^{-13} erg s^{-1} cm^{-2}, below ASCA's detection limit. The jet blob colliding to the environmental matter was supposedly not the X-ray source, although the emission mechanism has not been determined. A possible detection of a K line from highly ionized iron is discussed.Comment: 11 pages, 4 figures, submitted to ApJL. Fig2 is replaced with correct on

    Quasi periodic oscillations in XTE J0111.2--7317, highest frequency among the HMXB pulsars

    Get PDF
    We report here discovery of Quasi Periodic Oscillations (QPOs) in the High Mass X-ray Binary (HMXB) Pulsar XTE J0111.20-7317 during a transient outburst in this source in December 1998. Using observations made with the proportional counter array of the Rossi X-ray Timing Explorer during the second peak and the declining phase of this outburst we have discovered a QPO feature at a frequency of 1.27 Hz. We have ruled out the possibility that the observed QPOs can instead be from the neighbouring bright X-ray pulsar SMC X-1. This is the highest frequency QPO feature ever detected in any HMXB pulsar. In the absence of a cyclotron absorption feature in the X-ray spectrum, the QPO feature, along with the pulse period and X-ray flux measurement measurement helps us to constrain the magnetic field strength of the neutron star.Comment: Accepted for publication in The Astrophysical Journa

    Calcium-induced calcium release and type 3 ryanodine receptors modulate the slow afterhyperpolarising current, sIAHP, and its potentiation in hippocampal pyramidal neurons

    Get PDF
    The slow afterhyperpolarising current, sIAHP, is a Ca2+-dependent current that plays an important role in the late phase of spike frequency adaptation. sIAHP is activated by voltage-gated Ca2+ channels, while the contribution of calcium from ryanodine-sensitive intracellular stores, released by calcium-induced calcium release (CICR), is controversial in hippocampal pyramidal neurons. Three types of ryanodine receptors (RyR1-3) are expressed in the hippocampus, with RyR3 showing a predominant expression in CA1 neurons. We investigated the specific role of CICR, and particularly of its RyR3-mediated component, in the regulation of the sIAHP amplitude and time course, and the activity-dependent potentiation of the sIAHP in rat and mouse CA1 pyramidal neurons. Here we report that enhancement of CICR by caffeine led to an increase in sIAHP amplitude, while inhibition of CICR by ryanodine caused a small, but significant reduction of sIAHP. Inhibition of ryanodine-sensitive Ca2+ stores by ryanodine or depletion by the SERCA pump inhibitor cyclopiazonic acid caused a substantial attenuation in the sIAHP activity-dependent potentiation in both rat and mouse CA1 pyramidal neurons. Neurons from mice lacking RyR3 receptors exhibited a sIAHP with features undistinguishable from wild-type neurons, which was similarly reduced by ryanodine. However, the lack of RyR3 receptors led to a faster and reduced activity-dependent potentiation of sIAHP. We conclude that ryanodine receptor-mediated CICR contributes both to the amplitude of the sIAHP at steady state and its activity-dependent potentiation in rat and mouse hippocampal pyramidal neurons. In particular, we show that RyR3 receptors play an essential and specific role in shaping the activity-dependent potentiation of the sIAHP. The modulation of activity-dependent potentiation of sIAHP by RyR3-mediated CICR contributes to plasticity of intrinsic neuronal excitability and is likely to play a critical role in higher cognitive functions, such as learning and memory

    Recent X-ray measurements of the accretion-powered pulsar 4U 1907+09

    Get PDF
    X-ray observations of the accreting X-ray pulsar 4U~1907+09, obtained during February 1996 with the Proportional Counter Array on the Rossi X-ray Timing Experiment (RXTE), have enabled the first measurement of the intrinsic pulse period Ppulse since 1984: Ppulse=440.341[+0.012,-0.017] s. 4U 1907+09 is in a binary system with a blue supergiant. The orbital parameters were solved and this enabled the correction for orbital delay effects of a measurement of Ppulse obtained in 1990 with Ginga. Thus, three spin down rates could be extracted from four pulse periods obtained in 1983, 1984, 1990, and 1996. These are within 8% equal to a value of dPpulse/dt=+0.225 s/yr. This suggest that the pulsar is perhaps in a monotonous spin down mode since its discovery in 1983. Furthermore, the RXTE observations show transient ~18 s oscillations during a flare that lasted about 1 hour. The oscillations may be interpreted as Keplerian motion of an accretion disk near the magnetospheric radius. This, and the notion that the co-rotation radius is much larger than any conceivable value for the magnetospheric radius (because of the long spin period), renders it unlikely that this pulsar spins near equilibrium like is suspected for other slowing accreting X-ray pulsars. We suggest as an alternative that perhaps the frequent occurrence of a retrograde transient accretion disk may be consistently slowing the pulsar down. Further observations of flares can provide more evidence of this.Comment: 26 pages, 11 figures, to be published in Astrophysical Journal part I on March 20, 199

    Aquatic Exercise for Better Living on Land: Impact of Shallow-Water Exercise on Older Japanese Women for Performance of Activities of Daily Living (ADL)

    Get PDF
    Twenty-six Japanese women (70.5 yr) self-selected water exercise (WEX) (n=13), or control (CON) (n=13) for 12 weeks. WEX was performed 60-minutes/day, 3 days/week with warm-up, cool-down stretch, ADL exercises, and cardiovascular/muscular endurance in 30°C water at a xiphoid level depth. CON continued their current activity/nutrition patterns. Compared to CON, WEX improved (p\u3c.05) functional fitness and balance measures including arm curl (22%), chair stand (21%), 8-feet up & go (13%), chair sit/reach (50%), and 12-min walk (15%). No significant changes in sway velocity (SV) or limits of stability (LOS) were seen for either group. This shallow water exercise improved land-based ADL for older women but not balance. ADL tasks associated with balance did improve which may have indicated enhanced motor control

    Observation of X-ray lines from a Gamma-Ray Burst (GRB991216): Evidence of Moving Ejecta from the Progenitor

    Get PDF
    We report on the discovery of two emission features observed in the X-ray spectrum of the afterglow of the gamma-ray burst (GRB) of 16 Dec. 1999 by the Chandra X-Ray Observatory. These features are identified with the Lyα_{\alpha} line and the narrow recombination continuum by hydrogenic ions of iron at a redshift z=1.00±0.02z=1.00\pm0.02, providing an unambiguous measurement of the distance of a GRB. Line width and intensity imply that the progenitor of the GRB was a massive star system that ejected, before the GRB event, \approx 0.01 \Ms of iron at a velocity 0.1c\approx 0.1 c, probably by a supernova explosion.Comment: 11 pages,2 fig.s, link to the published paper in Science, 290, 955 (2000) through http://www.ias.rm.cnr.it/grb/gb991216.htm

    Auger Recombination in Semiconductor Quantum Wells

    Full text link
    The principal mechanisms of Auger recombination of nonequilibrium carriers in semiconductor heterostructures with quantum wells are investigated. It is shown for the first time that there exist three fundamentally different Auger recombination mechanisms of (i) thresholdless, (ii) quasi-threshold, and (iii) threshold types. The rate of the thresholdless Auger process depends on temperature only slightly. The rate of the quasi-threshold Auger process depends on temperature exponentially. However, its threshold energy essentially varies with quantum well width and is close to zero for narrow quantum wells. It is shown that the thresholdless and the quasi-threshold Auger processes dominate in narrow quantum wells, while the threshold and the quasi-threshold processes prevail in wide quantum wells. The limiting case of a three-dimensional (3D)Auger process is reached for infinitely wide quantum wells. The critical quantum well width is found at which the quasi-threshold and threshold Auger processes merge into a single 3D Auger process. Also studied is phonon-assisted Auger recombination in quantum wells. It is shown that for narrow quantum wells the act of phonon emission becomes resonant, which in turn increases substantially the coefficient of phonon-assisted Auger recombination. Conditions are found under which the direct Auger process dominates over the phonon-assisted Auger recombination at various temperatures and quantum well widths.Comment: 38 pages, 7 figure

    ASCA Observation of the New Transient X-ray Pulsar XTE J0111.2-7317 in the Small Magellanic Cloud

    Get PDF
    The new transient X-ray pulsar XTE J0111.2-7317 was observed with Advanced Satellite for Cosmology and Astrophysics (ASCA) on 1998 November 18, a few days after its discovery with the Proportional Counter Array onboard the Rossi X-ray Timing Explorer. The source was detected at a flux level of 3.6x10^-10 erg cm^-2 s^-1 in the 0.7--10.0 keV band, which corresponds to the X-ray luminosity of 1.8x10^38 erg s^-1, if a distance of 65 kpc for this pulsar in the Small Magellanic Cloud is assumed. Nearly sinusoidal pulsations with a period of 30.9497 +/- 0.0004 s were unambiguously detected during the ASCA observation. The pulsed fraction is low and slightly energy dependent with average value of \~27%. The energy spectrum shows a large soft excess below ~2 keV when fitted to a simple power-law type model. The soft excess is eliminated if the spectrum is fitted to an ``inversely broken power-law'' model, in which photon indices below and above a break energy of 1.5 keV are 2.3 and 0.8, respectively. The soft excess can also be described by a blackbody or a thermal bremsstrahlung when the spectrum above ~2 keV is modeled by a power-law. In these models, however, the thermal soft component requires a very large emission zone, and hence it is difficult to explain the observed pulsations at energies below 2 keV. A bright state of the source enables us to identify a weak iron line feature at 6.4 keV with an equivalent width of 50 +/- 14 eV. Pulse phase resolved spectroscopy revealed a slight hardening of the spectrum and marginal indication of an increase in the iron line strength during the pulse maximum.Comment: 8 pages, 5 Figures, to be published in ApJ. Also available at http://www-cr.scphys.kyoto-u.ac.jp/member/jun/job
    corecore