217 research outputs found

    Lack of Suppressive CD4+CD25+FOXP3+ T Cells in Advanced Stages of Primary Cutaneous T-Cell Lymphoma

    Get PDF
    Mycosis fungoides and its leukemic variant, Sezary syndrome, are the most common primary cutaneous T-cell lymphomas (CTCLs). In an ex vivo study, we investigated the percentage, phenotype, and suppressive function of CD4+CD25+ regulatory T cells (Tregs) from peripheral blood of CTCL patients. The percentage of Tregs did not differ significantly between patients and controls. Functional assays demonstrated a dichotomy in Treg function: in four out of 10 patients CD4+CD25+ T cells were incapable of suppressing autologous CD4+CD25− T-cell proliferation, whereas suppressive function was intact in the other six patients. Suppressive activity of Tregs inversely correlated with the peripheral blood tumor burden. T-plastin gene expression, used as a Sezary cell marker, confirmed that Sezary cells were heterogeneous for CD25 expression. Mixed lymphocyte reactions demonstrated that CD4+CD25− T cells from patients who lacked functional Tregs were susceptible to suppression by Tregs from healthy controls, and had not become suppressive themselves. Furthermore, we found reduced expression of Foxp3 in the CD4+CD25+ Tregs of these patients relative to the other six CTCL patients and controls. Our findings thus indicate a dysfunction of peripheral Tregs in certain CTCL patients, which correlates with tumor burden

    Activated T cells recruit exosomes secreted by dendritic cells via LFA-1

    Get PDF
    Contains fulltext : 79542.pdf (publisher's version ) (Closed access)Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functional and play a role in regulation of immune responses. How membrane protein transfer is achieved and regulated is unclear. Here we show that T cells can recruit major histocompatibility complex class II-containing DC exosomes secreted in the extracellular milieu during cognate DC-T-cell interactions. Recruitment of these exosomes required T-cell activation and was dependent on leukocyte function-associated antigen-1 (LFA-1) rather than on T-cell receptor specificity. Indeed, inducing a high-affinity state of LFA-1 on resting T cells was sufficient to provoke exosome binding. These results imply that DC exosomes secreted in the extracellular milieu during cognate T-cell-DC interactions are targeted to T cells activated in that microenvironment

    miR-155 overexpressing monocytes resemble HLA highISG15 + synovial tissue macrophages from patients with rheumatoid arthritis and induce polyfunctional CD4+ T cell activation

    Get PDF
    MicroRNAs (miRs) are known to regulate pro-inflammatory effector functions of myeloid cells, and miR dysregulation is implicated in rheumatoid arthritis (RA), a condition characterized by inflammation and destruction of the joints. We showed previously that miR-155 is increased in myeloid cells in RA and induces pro-inflammatory activation of monocytes and macrophages; however, its role at the interface between innate and adaptive immunity was not defined. Here, RNA-sequencing revealed that overexpression of miR-155 in healthy donor monocytes conferred a specific gene profile which bears similarities to that of RA synovial fluid-derived CD14+ cells and HLAhighISG15+ synovial tissue macrophages, both of which are characterized by antigen-presenting pathways. In line with this, monocytes in which miR-155 was overexpressed, displayed increased expression of HLA-DR and both co-stimulatory and co-inhibitory molecules, and induced activation of polyfunctional T cells. Together, these data underpin the notion that miR-155-driven myeloid cell activation in the synovium contributes not only to inflammation but may also influence the adaptive immune response

    Identification, frequency, activation and function of CD4+ CD25highFoxP3+ regulatory T cells in children with juvenile idiopathic arthritis

    Get PDF
    The aim of the study was to test the frequency of CD4+ CD25highFoxP3 regulatory T cells in JIA patients and to assess their activation status and functional activity. The study involved 12 children with JIA and 35 healthy control subjects. PBMC were stained with monoclonal antibodies (anti-CD25, anti-CD4, anti-CD127, anti-CD69, anti-CD71, and anti-FoxP3). The samples were evaluated using flow cytometer. CD4+ CD25− and CD4+ CD25+ cells were isolated by negative and positive selection with magnetic microbeads. CD4+ CD25+ and CD4+ CD25− cells were cultured separately and co-cultured (1:1) with or without PHA. The percentage of Tregs in JIA patients was significantly decreased in comparison with controls (median, 3.2 vs. 4.6; P = 0.042). Relative fluorescence intensities of FoxP3 were higher in JIA patients than in controls (median, 9.1 vs. 6.8). The percentage of activated Tregs (CD71+) was significantly higher in JIA patients in comparison with controls (median, 6.5 vs. 2.8; P = 0.00043). CD4+ CD25+ cells derived from JIA patients and controls were anergic upon PHA stimulation, while CD4+ CD25− cells showed intensive proliferative response. The proliferation rate of CD4+ CD25− cells stimulated by PHA was decreased in co-cultures. In JIA patients, the inhibition of proliferation of CD4+ CD25− cells by CD4+ CD25+ cells was 37.9%, whereas in controls it was significantly lower (55.7%, P = 0.046). JIA patients had statistically lower percentage of Tregs in peripheral blood compared to controls. CD4+ CD25+ cells sorted from peripheral blood of JIA patients had statistically lower ability to suppress CD4+ CD25− cell proliferation in comparison with cells obtained from controls

    Regulatory T Cells in γ Irradiation-Induced Immune Suppression

    Get PDF
    Sublethal total body γ irradiation (TBI) of mammals causes generalized immunosuppression, in part by induction of lymphocyte apoptosis. Here, we provide evidence that a part of this immune suppression may be attributable to dysfunction of immune regulation. We investigated the effects of sublethal TBI on T cell memory responses to gain insight into the potential for loss of vaccine immunity following such exposure. We show that in mice primed to an MHC class I alloantigen, the accelerated graft rejection T memory response is specifically lost several weeks following TBI, whereas identically treated naïve mice at the same time point had completely recovered normal rejection kinetics. Depletion in vivo with anti-CD4 or anti-CD25 showed that the mechanism involved cells consistent with a regulatory T cell (T reg) phenotype. The loss of the T memory response following TBI was associated with a relative increase of CD4+CD25+ Foxp3+ expressing T regs, as compared to the CD8+ T effector cells requisite for skin graft rejection. The radiation-induced T memory suppression was shown to be antigen-specific in that a third party ipsilateral graft rejected with normal kinetics. Remarkably, following the eventual rejection of the first MHC class I disparate skin graft, the suppressive environment was maintained, with markedly prolonged survival of a second identical allograft. These findings have potential importance as regards the immunologic status of T memory responses in victims of ionizing radiation exposure and apoptosis-inducing therapies

    In vivo Expansion of Naïve CD4+CD25high FOXP3+ Regulatory T Cells in Patients with Colorectal Carcinoma after IL-2 Administration

    Get PDF
    Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional Treg cells of a naïve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve Treg-cell pool. Higher frequencies of T-cell receptor excision circles in naïve Treg cells indicate IL-2 dependent thymic generation of naïve Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine Treg cells after IL-2 administration. These results point to a more complex regulation of Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve Treg cells
    corecore