215 research outputs found

    Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation.

    Get PDF
    BACKGROUND: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors

    IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease

    Get PDF
    ABSTRACT Background: A novel T helper (Th) cell lineage, Th17, that exclusively produces the proinflammatory cytokine interleukin 17 (IL17) has been reported to play important roles in various inflammatory diseases. IL23 is also focused upon for its potential to promote Th17. Here, the roles of the IL23/IL17 axis in inflammatory bowel diseases such as ulcerative colitis (UC) and Crohn's disease (CD) were investigated. Methods: Mucosal samples were obtained from surgically resected specimens (controls, n = 12; UC, n = 17; CD, n = 22). IL17 production by isolated peripheral blood (PB) and lamina propria (LP) CD4 + cells was examined. Quantitative PCR amplification was performed to determine the mRNA expression levels of IL17, interferon c (IFNc), IL23 receptor (IL23R) and retinoic acid-related orphan receptor c (RORC) in LP CD4 + cells, and IL12 family members, such as IL12p40, IL12p35 and IL23p19, in whole mucosal specimens. The effects of exogenous IL23 on IL17 production by LP CD4 + cells were also examined. Results: IL17 production was higher in LP CD4 + cells than in PB. Significant IL17 mRNA upregulation in LP CD4 + cells was found in UC, while IFNc was increased in CD. IL23R and RORC were upregulated in LP CD4 + cells isolated from both UC and CD. IL17 production was significantly increased by IL23 in LP CD4 + cells from UC but not CD. Upregulated IL23p19 mRNA expression was correlated with IL17 in UC and IFNc in CD. Conclusions: IL23 may play important roles in controlling the differential Th1/Th17 balance in both UC and CD, although Th17 cells may exist in both diseases. Crohn's disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel disease (IBD). Although the aetiology of IBD remains unclear, accumulating evidence suggests that dysfunction of the mucosal immune system plays important roles in IBD pathogenesis

    Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration.</p> <p>Methods</p> <p>We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA.</p> <p>Result</p> <p>We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by BACE 1 inhibited integrin β1 sialylation and migration by Golgi-anchored form of ST6Gal I.</p> <p>Conclusions</p> <p>Our results suggest that soluble ST6Gal I, possibly in cooperation with the Golgi-bound form, may participate in cancer progression and metastasis prior to being secreted from cancer cells.</p

    Visualizing Trimming Dependence of Biodistribution and Kinetics with Homo-and Heterogeneous N-Glycoclusters on Fluorescent Albumin

    Get PDF
    A series of N-glycans, each sequentially trimmed from biantennary sialoglycans, were homo-or heterogeneously clustered efficiently on fluorescent albumin using a method that combined strain-promoted alkyne-azide cyclization and 6Ï -azaelectrocyclization. Noninvasive in vivo kinetics and dissection analysis revealed, for the first time, a glycan-dependent shift from urinary to gall bladder excretion mediated by sequential trimming of non-reducing end sialic acids. N-glycoalbumins that were trimmed further, in particular, GlcNAc-and hybrid biantennary-terminated congeners, were selectively taken up by sinusoidal endothelial and stellate cells in the liver, which are critical for diagnosis and treatment of liver fibrillation. Our glycocluster strategy can not only reveal the previously unexplored extracellular functions of N-glycan trimming, but will be classified as the newly emerging glycoprobes for diagnostic and therapeutic applications

    Anti-Aβ Drug Screening Platform Using Human iPS Cell-Derived Neurons for the Treatment of Alzheimer's Disease

    Get PDF
    Background:Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive memory and cognitive decline during middle to late adult life. The AD brain is characterized by deposition of amyloid β peptide (Aβ), which is produced from amyloid precursor protein by β- and γ-secretase (presenilin complex)-mediated sequential cleavage. Induced pluripotent stem (iPS) cells potentially provide an opportunity to generate a human cell-based model of AD that would be crucial for drug discovery as well as for investigating mechanisms of the disease. Methodology/Principal Findings:We differentiated human iPS (hiPS) cells into neuronal cells expressing the forebrain marker, Foxg1, and the neocortical markers, Cux1, Satb2, Ctip2, and Tbr1. The iPS cell-derived neuronal cells also expressed amyloid precursor protein, β-secretase, and γ-secretase components, and were capable of secreting Aβ into the conditioned media. Aβ production was inhibited by β-secretase inhibitor, γ-secretase inhibitor (GSI), and an NSAID; however, there were different susceptibilities to all three drugs between early and late differentiation stages. At the early differentiation stage, GSI treatment caused a fast increase at lower dose (Aβ surge) and drastic decline of Aβ production. Conclusions/Significance:These results indicate that the hiPS cell-derived neuronal cells express functional β- and γ-secretases involved in Aβ production; however, anti-Aβ drug screening using these hiPS cell-derived neuronal cells requires sufficient neuronal differentiation

    Novel, Objective, Multivariate Biomarkers Composed of Plasma Amino Acid Profiles for the Diagnosis and Assessment of Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Inflammatory bowel disease (IBD) is a chronic intestinal disorder that is associated with a limited number of clinical biomarkers. In order to facilitate the diagnosis of IBD and assess its disease activity, we investigated the potential of novel multivariate indexes using statistical modeling of plasma amino acid concentrations (aminogram). METHODOLOGY AND PRINCIPAL FINDINGS: We measured fasting plasma aminograms in 387 IBD patients (Crohn's disease (CD), n = 165; ulcerative colitis (UC), n = 222) and 210 healthy controls. Based on Fisher linear classifiers, multivariate indexes were developed from the aminogram in discovery samples (CD, n = 102; UC, n = 102; age and sex-matched healthy controls, n = 102) and internally validated. The indexes were used to discriminate between CD or UC patients and healthy controls, as well as between patients with active disease and those in remission. We assessed index performances using the area under the curve of the receiver operating characteristic (ROC AUC). We observed significant alterations to the plasma aminogram, including histidine and tryptophan. The multivariate indexes established from plasma aminograms were able to distinguish CD or UC patients from healthy controls with ROC AUCs of 0.940 (95% confidence interval (CI): 0.898-0.983) and 0.894 (95%CI: 0.853-0.935), respectively in validation samples (CD, n = 63; UC, n = 120; healthy controls, n = 108). In addition, other indexes appeared to be a measure of disease activity. These indexes distinguished active CD or UC patients from each remission patients with ROC AUCs of 0.894 (95%CI: 0.853-0.935) and 0.849 (95%CI: 0.770-0.928), and correlated with clinical disease activity indexes for CD (r(s) = 0.592, 95%CI: 0.385-0.742, p<0.001) or UC (r(s) = 0.598, 95%CI: 0.452-0.713, p<0.001), respectively. CONCLUSIONS AND SIGNIFICANCE: In this study, we demonstrated that established multivariate indexes composed of plasma amino acid profiles can serve as novel, non-invasive, objective biomarkers for the diagnosis and monitoring of IBD, providing us with new insights into the pathophysiology of the disease
    corecore