10 research outputs found
Quantification of Nematic Cell Polarity in Three-dimensional Tissues
How epithelial cells coordinate their polarity to form functional tissues is
an open question in cell biology. Here, we characterize a unique type of
polarity found in liver tissue, nematic cell polarity, which is different from
vectorial cell polarity in simple, sheet-like epithelia. We propose a
conceptual and algorithmic framework to characterize complex patterns of
polarity proteins on the surface of a cell in terms of a multipole expansion.
To rigorously quantify previously observed tissue-level patterns of nematic
cell polarity (Morales-Navarette et al., eLife 8:e44860, 2019), we introduce
the concept of co-orientational order parameters, which generalize the known
biaxial order parameters of the theory of liquid crystals. Applying these
concepts to three-dimensional reconstructions of single cells from
high-resolution imaging data of mouse liver tissue, we show that the axes of
nematic cell polarity of hepatocytes exhibit local coordination and are aligned
with the biaxially anisotropic sinusoidal network for blood transport. Our
study characterizes liver tissue as a biological example of a biaxial liquid
crystal. The general methodology developed here could be applied to other
tissues or in-vitro organoids.Comment: 27 pages, 9 color figure
Method for immobilization of living and synthetic cells for high-resolution imaging and single-particle tracking
Super-resolution imaging and single-particle tracking require cells to be immobile as any movement reduces the resolution of the measurements. Here, we present a method based on APTES-glutaraldehyde coating of glass surfaces to immobilize cells without compromising their growth. Our method of immobilization is compatible with Saccharomyces cerevisiae, Escherichia coli, and synthetic cells (here, giant-unilamellar vesicles). The method introduces minimal background fluorescence and is suitable for imaging of single particles at high resolution. With S. cerevisiae we benchmarked the method against the commonly used concanavalin A approach. We show by total internal reflection fluorescence microscopy that modifying surfaces with ConA introduces artifacts close to the glass surface, which are not present when immobilizing with the APTES-glutaraldehyde method. We demonstrate validity of the method by measuring the diffusion of membrane proteins in yeast with single-particle tracking and of lipids in giant-unilamellar vesicles with fluorescence recovery after photobleaching. Importantly, the physical properties and shape of the fragile GUVs are not affected upon binding to APTES-glutaraldehyde coated glass. The APTES-glutaraldehyde is a generic method of immobilization that should work with any cell or synthetic system that has primary amines on the surface
On representative functions method for clustering of 2D contours with application to pottery fragments typology
We investigate clustering of 2D contours which represent cross-sections of rotationally symmetric objects. We propose modifications of the existing representations of digitized 2D contours and similarity measures. In particular, we represent each of the investigated objects as a single number and two functions and we use the DTW distance to measure their similarity. We apply our method to clustering of pottery fragments
Minimax theorems for ϕ−convex functions with applications
We investigateminimax theorems for ϕ−convex functions. As an application we provide a formula for the ϕ- conjugation of the pointwise maximum of ϕ- convex functions
Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion
Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell\u2013cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell\u2013cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell\u2013cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization
Disaccharides impact the lateral organization of lipid membranes
Disaccharides are well-known for their membrane protective ability. Interaction between sugars and multicomponent membranes, however, remains largely unexplored. Here, we combine molecular dynamics simulations and fluorescence microscopy to study the effect of mono- and disaccharides on membranes that phase separate into Lo and Ld domains. We find that nonreducing disaccharides, sucrose and trehalose, strongly destabilize the phase separation leading to uniformly mixed membranes as opposed to monosaccharides and reducing disaccharides. To unveil the driving force for this process, simulations were performed in which the sugar linkage was artificially modified. The availability of accessible interfacial binding sites that can accommodate the nonreducing disaccharides is key for their strong impact on lateral membrane organization. These exclusive interactions between the nonreducing sugars and the membranes may rationalize why organisms such as yeasts, tardigrades, nematodes, bacteria, and plants accumulate sucrose and trehalose, offering cell protection under anhydrobiotic conditions. The proposed mechanism might prove to be a more generic way by which surface bound agents could affect membranes