15 research outputs found

    The effect of vineyard long-term monoculture soil on production of volatile compounds and photosynthetic apparatus in grapevine leaves

    Get PDF
    The effect of soil collected from long-term (1007 years of duration of monoculture) and short-term (55 years) grapevine monoculture on production of volatile organic compounds (VOC’s) and on functional parameters of photosystem II in grapevine leaves was analyzed. Grapevine plantlets grown in tested soils showed differences in VOC’s production after five months cultivation. Chlorophyll a fluorescence measurements by JIP-test revealed that the photosystem II was less efficient but the fluorescence intensity increased in plant growing in soil from the long-term monoculture compared to plants growing in the short term monoculture soil. Pseudomonas spp. carrying the biocontrol genes phlD and hcnAB were isolated from long-term monoculture soil. A consortium of ten of these isolates was added to the short term monoculture soil. The plants grown in this inoculated soil showed similar changes in fluorescence intensity and photosystem efficacy as the plants growing in long term monoculture. In this study, simple tools for measurement of a “soil effect” by measuring only a leaf have been tested successfully. They have allowed exhibiting the influence of long-term monoculture on plant physiology.

    Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Get PDF
    Background: Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. Findings: F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions: Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs

    Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics

    Get PDF
    Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity

    Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases

    Get PDF
    Grapevine is one of the most important economic crops yielding berries, wine products as well as derivates. However, due to the large array of pathogens inducing diseases on this plant, considerable amounts of pesticides—with possible negative impact on the environment and health—have been used and are currently used in viticulture. To avoid negative impacts of such products and to ensure product quality, a substantial fraction of pesticides needs to be replaced in the near future. One solution can be related to the use of beneficial bacteria inhabiting the rhizo- and/or the endosphere of plants. These biocontrol bacteria and their secondary metabolites can reduce directly or indirectly pathogen diseases by affecting pathogen performance by antibiosis, competition for niches and nutrients, interference with pathogen signaling or by stimulation of host plant defenses. Due to the large demand for biocontrol of grapevine diseases, such biopesticides, their modes of actions and putative consequences of their uses need to be described. Moreover, the current knowledge on new strains from the rhizo- and endosphere and their metabolites that can be used on grapevine plants to counteract pathogen attack needs to be discussed. This is in particular with regard to the control of root rot, grey mould, trunk diseases, powdery and downy mildews, pierce’s disease, grapevine yellows as well as crown gall. Future prospects on specific beneficial microbes and their secondary metabolites that can be used as elicitors of plant defenses and/or as biocontrol agents with potential use in a more sustainable viticulture will be further discussed

    The effect of vineyard long-term monoculture soil on production of volatile compounds and photosynthetic apparatus in grapevine leaves

    Full text link
    The effect of soil collected from long-term (1007 years of duration of monoculture) and short-term (55 years) grapevine monoculture on production of volatile organic compounds (VOC’s) and on functional parameters of photosystem II in grapevine leaves was analyzed. Grapevine plantlets grown in tested soils showed differences in VOC’s production after five months cultivation. Chlorophyll a fluorescence measurements by JIP-test revealed that the photosystem II was less efficient but the fluorescence intensity increased in plant growing in soil from the long-term monoculture compared to plants growing in the short term monoculture soil. Pseudomonas spp. carrying the biocontrol genes phlD and hcnAB were isolated from long-term monoculture soil. A consortium of ten of these isolates was added to the short term monoculture soil. The plants grown in this inoculated soil showed similar changes in fluorescence intensity and photosystem efficacy as the plants growing in long term monoculture. In this study, simple tools for measurement of a “soil effect” by measuring only a leaf have been tested successfully. They have allowed exhibiting the influence of long-term monoculture on plant physiology

    Distribution of Pseudomonas populations harboring phlD or hcnAB biocontrol genes is related to depth in vineyard soils

    Full text link
    The abundance and population structure of pseudomonads in soils collected from long-(1006 years) and short-(54 years) term grapevine monocultures in Switzerland were examined across five soil horizons within the 1.20e1.35 m range. Soil samples were baited with grapevine, and rhizosphere pseudomonads containing the biocontrol genes phlD (2,4-diacetylphloroglucinol synthesis) and/or hcnAB (hydrogen cyanide synthesis) were analyzed by MPN-PCR. The numbers of total, phlDþ and hcnABþ pseudomonads decreased with depth by 1.5e2 log (short-term monoculture) and 3e3.5 log (long-term monoculture). In addition, the percentages of phlDþ (except in short-term monoculture) and hcnABþ pseudomonads were also lower in deeper horizons. RFLP-profiling of phlDþ and hcnABþ pseudomonads revealed three phlD and twelve hcnAB alleles overall, but the number of alleles for both decreased in relation to depth. The only phlD allele found in deeper horizons was also found in topsoil, whereas one hcnAB allele (k) found in deeper horizons in long-term monoculture was absent in the topsoil. This suggests that certain Pseudomonas ecotypes are adapted to specific depths. Four hcnAB alleles enabled discrimination between monocultures. We conclude that soil depth is a factor selecting phlD and hcnAB genotypes, and that the allelic diversity of the two biocontrol genes decreases with depth

    Interspecies variation in survival and growth of filamentous heterotrophic bacteria in response to UVC radiation

    Full text link
    Ultraviolet radiation is an important environmental constraint on the evolution of life. In addition to its harmful effects, ultraviolet radiation plays an important role in generating genetic polymorphisms and acting as a selective agent. Understanding how prokaryotes cope with high radiation can give insights on the evolution of life on Earth. Four representative filamentous bacteria from the family Cytophagaceae with different pigmentation were selected and exposed to different doses of UVC radiation (15–32,400 J/m-2). The effect of UVC radiation on bacterial survival, growth and morphology were investigated. Results showed high survival in response to UVC for Rudanella lutea and Fibrisoma limi, whereas low survival was observed for Fibrella aestuarina and Spirosoma linguale. S. linguale showed slow growth recovery after ultraviolet exposure, R. lutea and F. limi showed intermediate growth recovery, while F. aestuarina had the fastest recovery among the four tested bacteria. In terms of survival, S. linguale was the most sensitive bacterium whereas R. lutea and F. limi were better at coping with UVC stress. The latter two resumed growth even after 2 h exposure (~10,800 J/m-2). Additionally, the ability to form multicellular filaments after exposure was tested using two bacteria: one representative of the high (R. lutea) and one of the low (F. aestuarina) survival rates. The ability to elongate filaments due to cell division was preserved but modified. In R. lutea 10 min exposure reduced the average filament length. The opposite was observed in F. aestuarina, where the 5 and 10 min exposures increased the average filament length. R. lutea and F. limi are potential candidates for further research into survival and resistance to ultraviolet radiation stress

    Persistence of a biocontrol Pseudomonas inoculant as high populations of culturable and non-culturable cells in 200-cm-deep soil profiles

    No full text
    Little is known about the ecology of soil inoculants used for pathogen biocontrol, biofertilization and bioremediation under field conditions. We investigated the persistence and the physiological states of soil-inoculated Pseudomonas protegens (previously Pseudomonas fluorescens) CHA0 (108 CFU g−1 surface soil) in different soil microbial habitats in a planted ley (Medicago sativa L.) and an uncovered field plot. At 72 days, colony counts of the inoculant were low in surface soil (uncovered plot) and earthworm guts (ley plot), whereas soil above the plow pan (uncovered plot), and the rhizosphere and worm burrows present until 1.2 m depth (ley plot) were survival hot spots (105-106 CFU g−1 soil). Interestingly, strain CHA0 was also detected in the subsoil of both plots, at 102-105 CFU g−1 soil between 1.8 and 2 m depth. However, non-cultured CHA0 cells were also evidenced based on immunofluorescence microscopy. Kogure's direct viable counts of nutrient-responsive cells showed that many more CHA0 cells were in a viable but non-culturable (VBNC) or a non-responsive (dormant) state than in a culturable state, and the proportion of cells in those non-cultured states depended on soil microbial habitat. At the most, cells in a VBNC state amounted to 34% (above the plow pan) and those in a dormant state to 89% (in bulk soil between 0.6 and 2 m) of all CHA0 cells. The results indicate that field-released Pseudomonas inoculants may persist at high cell numbers, even in deeper soil layers, and display a combination of different physiological states whose prevalence fluctuates according to soil microbial habitats

    Candidatus Syngnamydia Venezia, a novel member of the Phylum Chlamydiae from the Broad Nosed Pipefish, Syngnathus typhle

    Get PDF
    Chlamydia are obligate intracellular bacteria and important pathogens of humans and animals. Chlamydia-related bacteria are also major fish pathogens, infecting epithelial cells of the gills and skin to cause the disease epitheliocystis. Given the wide distribution, ancient origins and spectacular diversity of bony fishes, this group offers a rich resource for the identification and isolation of novel Chlamydia. The broad-nosed pipefish (Syngnathus typhle) is a widely distributed and genetically diverse temperate fish species, susceptible to epitheliocystis across much of its range. We describe here a new bacterial species, Candidatus Syngnamydia venezia; epitheliocystis agent of S. typhle and close relative to other chlamydial pathogens which are known to infect diverse hosts ranging from invertebrates to humans

    Use of a four-tiered graph to parse the factors leading to phenotypic clustering in bacteria: a case study based on samples from the aletsch glacier

    Get PDF
    An understanding of bacterial diversity and evolution in any environment requires knowledge of phenotypic diversity. In this study, the underlying factors leading to phenotypic clustering were analyzed and interpreted using a novel approach based on a four-tiered graph. Bacterial isolates were organized into equivalence classes based on their phenotypic profile. Likewise, phenotypes were organized in equivalence classes based on the bacteria that manifest them. The linking of these equivalence classes in a four-tiered graph allowed for a quick visual identification of the phenotypic measurements leading to the clustering patterns deduced from principal component analyses. For evaluation of the method, we investigated phenotypic variation in enzyme production and carbon assimilation of members of the genera Pseudomonas and Serratia, isolated from the Aletsch Glacier in Switzerland. The analysis indicates that the genera isolated produce at least six common enzymes and can exploit a wide range of carbon resources, though some specialist species within the pseudomonads were also observed. We further found that pairwise distances between enzyme profiles strongly correlate with distances based on carbon profiles. However, phenotypic distances weakly correlate with phylogenetic distances. The method developed in this study facilitates a more comprehensive understanding of phenotypic clustering than what would be deduced from principal component analysis alone
    corecore