2,555 research outputs found

    Direct Observation and simulation of ladle pouring behaviour in die casting sleeve

    Get PDF
    The ladle pouring process is one part of die casting which has the advantages of high speed, good quality and mass production. The molten metal is quickly poured into the sleeve by tilting the ladle, and immediately injected into the die cavity with high speed and high pressure by advancing the plunger. Since the entrapment of air and the generation of solidified layer in the ladle pouring may cause the defects of cast products, it is necessary to simulate the ladle pouring behavior. In the present study, the pouring experiment into the sleeve using water and die casting aluminum alloy JIS-ADC12 are carried out to observe the flow behavior by tilting the ladle. The temperature of the dissolved metal is measured using a thermocouple to investigate heat transfer behavior. The flow behaviors in ladle pouring of water and molten aluminum alloy are simulated using ParticleworksTM of MPS software. The simulation results, when using water are almost the same actual wave behavior. It is difficult to simulate the wave behavior of molten aluminum alloy because there is a difference in wave behavior between water and molten aluminum alloy. On the other hands, it is clear that the molten aluminum alloy is not solidified during wave behavior in the early stage of pouring by the experiments. Therefore, we try to adjust the kinematic viscosity of molten metal and the thermal conductivity of sleeve die. As the result, the wave behavior and temperature of molten aluminum alloy after adjusting the parameters are almost agreed with the actual phenomena. Flow and heat transfer simulation using the MPS method is effective method that ladle pouring of molten aluminum alloy with free surface flow can be simulated accurately

    Quantum Nernst effect in a bismuth single crystal

    Full text link
    We report a theoretical calculation explaining the quantum Nernst effect observed experimentally in a bismuth single crystal. Generalizing the edge-current picture in two dimensions, we show that the peaks of the Nernst coefficient survive in three dimensions due to a van Hove singularity. We also evaluate the phonon-drag effect on the Nernst coefficient numerically. Our result agrees with the experimental result for a bismuth single crystal.Comment: 4 pages, 4 figures, to be published in Proceedings of ISQM-Tokyo '0

    Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls

    Full text link
    We study hydrodynamic interactions of spherical particles in incident Poiseuille flow in a channel with infinite planar walls. The particles are suspended in a Newtonian fluid, and creeping-flow conditions are assumed. Numerical results, obtained using our highly accurate Cartesian-representation algorithm [Physica A xxx, {\bf xx}, 2005], are presented for a single sphere, two spheres, and arrays of many spheres. We consider the motion of freely suspended particles as well as the forces and torques acting on particles adsorbed at a wall. We find that the pair hydrodynamic interactions in this wall-bounded system have a complex dependence on the lateral interparticle distance due to the combined effects of the dissipation in the gap between the particle surfaces and the backflow associated with the presence of the walls. For immobile particle pairs we have examined the crossover between several far-field asymptotic regimes corresponding to different relations between the particle separation and the distances of the particles from the walls. We have also shown that the cumulative effect of the far-field flow substantially influences the force distribution in arrays of immobile spheres. Therefore, the far-field contributions must be included in any reliable algorithm for evaluating many-particle hydrodynamic interactions in the parallel-wall geometry.Comment: submitted to Physics of Fluid

    Fitting Voronoi Diagrams to Planar Tesselations

    Get PDF
    Given a tesselation of the plane, defined by a planar straight-line graph GG, we want to find a minimal set SS of points in the plane, such that the Voronoi diagram associated with SS "fits" \ GG. This is the Generalized Inverse Voronoi Problem (GIVP), defined in \cite{Trin07} and rediscovered recently in \cite{Baner12}. Here we give an algorithm that solves this problem with a number of points that is linear in the size of GG, assuming that the smallest angle in GG is constant.Comment: 14 pages, 8 figures, 1 table. Presented at IWOCA 2013 (Int. Workshop on Combinatorial Algorithms), Rouen, France, July 201
    corecore