101 research outputs found

    A new 2D-based method for myocardial velocity strain and strain rate quantification in a normal adult and paediatric population: assessment of reference values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in technology have provided the opportunity for off-line analysis of digital video-clips of two-dimensional (2-D) echocardiographic images.</p> <p>Commercially available software that follows the motion of cardiac structures during cardiac cycle computes both regional and global velocity, strain, and strain rate (SR).</p> <p>The present study aims to evaluate the clinical applicability of the software based on the tracking algorithm feature (studied for cardiology purposes) and to derive the reference values for longitudinal and circumferential strain and SR of the left ventricle in a normal population of children and young adults.</p> <p>Methods</p> <p>45 healthy volunteers (30 adults: 19 male, 11 female, mean age 37 ± 6 years; 15 children: 8 male, 7 female, mean age 8 ± 2 years) underwent transthoracic echocardiographic examination; 2D cine-loops recordings of apical 4-four 4-chamber (4C) and 2-chamber (2C) views and short axis views were stored for off-line analysis.</p> <p>Computer analyses were performed using specific software relying on the algorithm of optical flow analysis, specifically designed to track the endocardial border, installed on a Windows™ based computer workstation. Inter and intra-observer variability was assessed.</p> <p>Results</p> <p>The feasibility of measurements obtained with tissue tracking system was higher in apical view (100% for systolic events; 64% for diastolic events) than in short axis view (70% for systolic events; 52% for diastolic events). Longitudinal systolic velocity decreased from base to apex in all subjects (5.22 ± 1.01 vs. 1.20 ± 0.88; p < 0.0001). Longitudinal strain and SR significantly increased from base to apex in all subjects (-12.95 ± 6.79 vs. -14.87 ± 6.78; p = 0.002; -0.72 ± 0.39 vs. -0.94 ± 0.48, p = 0.0001, respectively). Similarly, circumferential strain and SR increased from base to apex (-21.32 ± 5.15 vs. -27.02 ± 5.88, p = 0.002; -1.51 ± 0.37 vs. -1.95 ± 0.57, p = 0.003, respectively).</p> <p>Values of global systolic SR, both longitudinal and circumferential, were significantly higher in children than in adults (-1.3 ± 0.2, vs. -1.11 ± 0.2, p = 0.006; -1.9 ± 0.6 vs. -1.6 ± 0.5, p = 0.0265, respectively). No significant differences in longitudinal and circumferential systolic velocities were identified for any segment when comparing adults with children.</p> <p>Conclusion</p> <p>This 2D based tissue tracking system used for computation is reliable and applicable in adults and children particularly for systolic events. Measured with this technology, we have established reference values for myocardial velocity, Strain and SR for both young adults and children.</p

    Informing evaluation of a smartphone application for people with acquired brain injury: a stakeholder engagement study

    Get PDF
    Background Brain in Hand is a smartphone application (app) that allows users to create structured diaries with problems and solutions, attach reminders, record task completion and has a symptom monitoring system. Brain in Hand was designed to support people with psychological problems, and encourage behaviour monitoring and change. The aim of this paper is to describe the process of exploring the barriers and enablers for the uptake and use of Brain in Hand in clinical practice, identify potential adaptations of the app for use with people with acquired brain injury (ABI), and determine whether the behaviour change wheel can be used as a model for engagement. Methods We identified stakeholders: ABI survivors and carers, National Health Service and private healthcare professionals, and engaged with them via focus groups, conference presentations, small group discussions, and through questionnaires. The results were evaluated using the behaviour change wheel and descriptive statistics of questionnaire responses. Results We engaged with 20 ABI survivors, 5 carers, 25 professionals, 41 questionnaires were completed by stakeholders. Comments made during group discussions were supported by questionnaire results. Enablers included smartphone competency (capability), personalisation of app (opportunity), and identifying perceived need (motivation). Barriers included a physical and cognitive inability to use smartphone (capability), potential cost and reliability of technology (opportunity), and no desire to use technology or change from existing strategies (motivation). The stakeholders identified potential uses and changes to the app, which were not easily mapped onto the behaviour change wheel, e.g. monitoring fatigue levels, method of logging task completion, and editing the diary on their smartphone. Conclusions The study identified that both ABI survivors and therapists could see a use for Brain in Hand, but wanted users to be able to personalise it themselves to address individual user needs, e.g. monitoring activity levels. The behaviour change wheel is a useful tool when designing and evaluating engagement activities as it addresses most aspects of implementation, however additional categories may be needed to explore the specific features of assistive technology interventions, e.g. technical functions

    Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT

    Get PDF
    The aim of the current study was to evaluate the relationship between the site of latest mechanical activation as assessed with gated myocardial perfusion SPECT (GMPS), left ventricular (LV) lead position and response to cardiac resynchronization therapy (CRT). The patient population consisted of consecutive patients with advanced heart failure in whom CRT was currently indicated. Before implantation, 2-D echocardiography and GMPS were performed. The echocardiography was performed to assess LV end-systolic volume (LVESV), LV end-diastolic volume (LVEDV) and LV ejection fraction (LVEF). The site of latest mechanical activation was assessed by phase analysis of GMPS studies and related to LV lead position on fluoroscopy. Echocardiography was repeated after 6 months of CRT. CRT response was defined as a decrease of a parts per thousand yen15% in LVESV. Enrolled in the study were 90 patients (72% men, 67 +/- 10 years) with advanced heart failure. In 52 patients (58%), the LV lead was positioned at the site of latest mechanical activation (concordant), and in 38 patients (42%) the LV lead was positioned outside the site of latest mechanical activation (discordant). CRT response was significantly more often documented in patients with a concordant LV lead position than in patients with a discordant LV lead position (79% vs. 26%, p < 0.01). After 6 months, patients with a concordant LV lead position showed significant improvement in LVEF, LVESV and LVEDV (p < 0.05), whereas patients with a discordant LV lead position showed no significant improvement in these variables. Patients with a concordant LV lead position showed significant improvement in LV volumes and LV systolic function, whereas patients with a discordant LV lead position showed no significant improvements.Cardiovascular Aspects of Radiolog

    Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyssynchrony of myocardial deformation is usually described in terms of variability only (e.g. standard deviations SD's). A description in terms of the spatio-temporal distribution pattern (vector-analysis) of dyssynchrony or by indices estimating its impact by expressing dyscoordination of shortening in relation to the global ventricular shortening may be preferential. Strain echocardiography by speckle tracking is a new non-invasive, albeit 2-D imaging modality to study myocardial deformation.</p> <p>Methods</p> <p>A post-processing toolbox was designed to incorporate local, speckle tracking-derived deformation data into a 36 segment 3-D model of the left ventricle. Global left ventricular shortening, standard deviations and vectors of timing of shortening were calculated. The impact of dyssynchrony was estimated by comparing the end-systolic values with either early peak values only (early shortening reserve ESR) or with all peak values (virtual shortening reserve VSR), and by the internal strain fraction (ISF) expressing dyscoordination as the fraction of deformation lost internally due to simultaneous shortening and stretching. These dyssynchrony parameters were compared in 8 volunteers (NL), 8 patients with Wolff-Parkinson-White syndrome (WPW), and 7 patients before (LBBB) and after cardiac resynchronization therapy (CRT).</p> <p>Results</p> <p>Dyssynchrony indices merely based on variability failed to detect differences between WPW and NL and failed to demonstrate the effect of CRT. Only the 3-D vector of onset of shortening could distinguish WPW from NL, while at peak shortening and by VSR, ESR and ISF no differences were found. All tested dyssynchrony parameters yielded higher values in LBBB compared to both NL and WPW. CRT reduced the spatial divergence of shortening (both vector magnitude and direction), and improved global ventricular shortening along with reductions in ESR and dyscoordination of shortening expressed by ISF.</p> <p>Conclusion</p> <p>Incorporation of local 2-D echocardiographic deformation data into a 3-D model by dedicated software allows a comprehensive analysis of spatio-temporal distribution patterns of myocardial dyssynchrony, of the global left ventricular deformation and of newer indices that may better reflect myocardial dyscoordination and/or impaired ventricular contractile efficiency. The potential value of such an analysis is highlighted in two dyssynchronous pathologies that impose particular challenges to deformation imaging.</p

    Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT). A newly developed three-dimensional (3-D) speckle tracking system can quantify endocardial area change ratio (area strain), which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV) segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI) can quantify dyssynchrony and predict response to CRT.</p> <p><b>Methods</b></p> <p>We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35%) and QRS duration of 172 ± 30 ms (all≥120 ms) who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT.</p> <p>Results</p> <p>ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC) of 0.93 (p < 0.001). Two-dimensional radial dyssynchrony determined by speckle-tracking strain was also predictive of response to CRT with an AUC of 0.82 (p < 0.005). Interestingly, ASDI ≥ 3.8% was associated with the highest incidence of echocardiographic improvement after CRT with a response rate of 100% (7/7), and baseline ASDI correlated with reduction of LV end-systolic volume following CRT (r = 0.80, p < 0.001).</p> <p><b>Conclusions</b></p> <p>ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.</p

    Randomised Trial of Text Messaging on Adherence to Cardiovascular Preventive Treatment (INTERACT Trial)

    Get PDF
    BACKGROUND: About one third of patients prescribed blood pressure or lipid-lowering drugs for the prevention of coronary heart disease and stroke do not take their medication as prescribed. We conducted a randomized trial to evaluate text messaging as a means of improving adherence to cardiovascular disease preventive treatment. METHODS: 303 patients taking blood pressure and/or lipid-lowering medications were randomly assigned to being sent text messages (Text group, 151) or not being sent them (No text group, 152). Texts were sent daily for 2 weeks, alternate days for 2 weeks and weekly thereafter for 22 weeks (6 months overall), using an automated computer programme. Patients were asked to respond on whether they had taken their medication, whether the text reminded them to do so if they had forgotten, and if they had not taken their medication to determine if there was a reason for not doing so. At 6 months, use of medication was assessed. RESULTS: Two patients were lost to follow-up, providing data on 301 for analysis. In the No text group 38/151 (25%) took less than 80% of the prescribed regimen (ie. stopped medication completely or took it on fewer than 22 of the last 28 days of follow-up) compared to 14/150 patients (9%) in the Text group - an improvement in adherence affecting 16 per 100 patients (95% CI 7 to 24), p<0.001. The texts reminded 98/151 patients (65%) to take medication on at least one occasion and lead to 20/151 (13%) who stopped taking medication because of concern over efficacy or side-effects, resuming treatment. CONCLUSIONS: In patients taking blood pressure or lipid-lowering treatment for the prevention of cardiovascular disease, text messaging improved medication adherence compared with no text messaging. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN74757601

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate

    Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments

    Get PDF
    Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed
    corecore