6,002 research outputs found
Seizure onset zone localization from ictal high-density EEG in five patients
Rationale
Because epilepsy is a network disease, localization of the exact seizure onset zone (SOZ) is difficult because the epileptic activity can spread to other regions within milliseconds. Functional connectivity metrics quantify how the activity in different brain regions is interrelated. In the past, it has been shown that functional connectivity analysis of ictal intracranial EEG (icEEG) recordings can help with SOZ localization in patients with focal epilepsy (van Mierlo et al., 2014). However, it would be of high clinical value to be able to localize the SOZ based on non-invasive ictal EEG recordings to optimize the icEEG implantation scheme or to avoid invasive monitoring and improve surgical outcome. In this work, we propose an approach to localize the SOZ based on non-invasive ictal high-density EEG (hd-EEG) recordings.
Methods
We considered retrospective ictal epochs of 2.4 s up to 10 s recorded with hd-EEG (256 electrodes) in five patients who were rendered seizure free after surgery. From the 256 electrodes, the facial electrodes were removed, resulting in a subset of 204 electrodes. A 28-channel subset was constructed to mimic a low-density (ld) electrode setup used in clinical practice. EEG source imaging (ESI) was performed in the CARTOOL software using an individual head model (LSMAC) to calculate the forward model (Brunet et al., 2011). We considered sources uniformly distributed in the brain with a spacing of 5 mm. LORETA (Pascal-Marqui et al., 1994) was used as inverse solution method. In each cluster of activity, we determined a central source based on the criterion that there was no higher power in its neighborhood. The time-varying connectivity pattern between the time series of these sources was calculated using Granger causality (van Mierlo et al., 2013). This was done in the frequency band containing the fundamental seizure frequency, 3-30Hz. The outdegree of each selected dipole was determined as the sum over time of all outgoing connections. Around the dipole with the highest outdegree, we determined a region of dipoles that had a power that was at least 90% of the power of the center dipole. This region was then considered as the SOZ.
Results
We were able to successfully localize the driver in the resected zone for all patients based on ESI followed by connectivity analysis of the hd-EEG (mean localization error (LE) = 0 mm). If we chose the cluster with the highest power as driver, the mean LE was 59.69 mm. For the ld-EEG, ESI followed by connectivity analysis resulted in a mean LE of 23.30 mm and when selecting the cluster with the highest power as driver, the mean LE was 31.21 mm.
Conclusions
ESI in combination with connectivity analysis can successfully localize the SOZ in non-invasive ictal hd-EEG recordings and greatly outperforms localization based on power. For ld-EEG recordings, the localization error remains significant but still outperforms localization based on power. This could have important clinical relevance for the presurgical evaluation in focal epilepsy
A rare case of supraspinatus tendon rupture
Item does not contain fulltext1 januari 201
Simulation of the CMS Resistive Plate Chambers
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to
the formation of the trigger decision and reconstruction of the muon trajectory
parameters. Simulation of the RPC response is a crucial part of the entire CMS
Monte Carlo software and directly influences the final physical results. An
algorithm based on the parametrization of RPC efficiency, noise, cluster size
and timing for every strip has been developed. Experimental data obtained from
cosmic and proton-proton collisions at TeV have been used for
determination of the parameters. A dedicated validation procedure has been
developed. A good agreement between the simulated and experimental data has
been achieved.Comment: to be published in JINS
A novel technique capable of taking 'protected' biopsies for reliable assessment of the distribution of microbiota along the colonic mucosa
We evaluated a novel 'protected' biopsy method to reliably ascertain the spatial distribution of the mucosa-adherent colonic microbiota. Apart from minor differences at genus level, overall similarities along the colon were high between the various areas, irrespective of protected or unprotected sampling.Peer reviewe
The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity
Dysfunctional mitochondria characterise Parkinson's Disease (PD). Uncovering etiological molecules, which harm the homeostasis of mitochondria in response to pathological cues, is therefore pivotal to inform early diagnosis and therapy in the condition, especially in its idiopathic forms. This study proposes the 18 kDa Translocator Protein (TSPO) to be one of those. Both in vitro and in vivo data show that neurotoxins, which phenotypically mimic PD, increase TSPO to enhance cellular redox-stress, susceptibility to dopamine-induced cell death, and repression of ubiquitin-dependent mitophagy. TSPO amplifies the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signalling, forming positive feedback, which represses the transcription factor EB (TFEB) and the controlled production of lysosomes. Finally, genetic variances in the transcriptome confirm that TSPO is required to alter the autophagy-lysosomal pathway during neurotoxicity
- âŠ