203 research outputs found

    Pretreatment haemoglobin levels significantly predict the tumour response to primary chemotherapy in human breast cancer

    Get PDF
    The purpose of this study was to evaluate whether tumour response to primary chemotherapy in human breast cancer is influenced by baseline haemoglobin (Hb) status. A total of 157 patients with T2-4, N0-1 M0 breast cancer were treated with chemotherapy consisting of either the CMF regimen + tamoxifen (the first 76 cases) or the single-agent epirubicin (the subsequent 81) before definitive surgery. In total, 144 patients were fully assessable. Ki67, p53, bcl-2, c-erbB2, steroid hormone receptor, and microvessel density were evaluated immunohistochemically in tumour specimens obtained before chemotherapy and at surgery. Tumour shrinkage >50% occurred in 72.1% of patients. Responding patients had higher baseline Hb levels and red blood cell counts than nonresponders (P<0.01 and <0.003, respectively). The distribution of disease response according to increasing cutoffs of baseline Hb status showed that from 12.5 mg l(-1) onwards, patients with Hb levels above the cutoff obtained a greater response rate than those with lower Hb values. The difference attained the statistical significance at 12.5 (76.1 vs 59.5%, P<0.05) and 13.0 g/dl(-1) (81.0 vs 57.6%, P<0.002) cutoffs, respectively. The predictive role of Hb levels was maintained in multivariate analysis after adjustment for clinical and biological characteristics and treatment regimen. Patients with baseline Hb levels </=13 g dl(-1) showed a lower treatment-induced reduction in Ki67 expression (P<0.04) and a higher Ki67 expression at postoperative evaluation (P<0.02) than their counterparts. In conclusion, low Hb levels may negatively influence the response rate of chemotherapy in breast cancer patients. Inhibition of antiproliferative activity could be a possible mechanism

    Safety profile of Coartem®: the evidence base

    Get PDF
    This article reviews the comprehensive data on the safety and tolerability from over 6,300 patients who have taken artemether/lumefantrine (Coartem®) as part of Novartis-sponsored or independently-sponsored clinical trials. The majority of the reported adverse events seen in these studies are mild or moderate in severity and tend to affect the gastrointestinal or nervous systems. These adverse events, which are common in both adults and children, are also typical of symptoms of malaria or concomitant infections present in these patients. The wealth of safety data on artemether/lumefantrine has not identified any neurological, cardiac or haematological safety concerns. In addition, repeated administration is not associated with an increased risk of adverse drug reactions including neurological adverse events. This finding is especially relevant for children from regions with high malaria transmission rates who often receive many courses of anti-malarial medications during their lifetime. Data are also available to show that there were no clinically relevant differences in pregnancy outcomes in women exposed to artemether/lumefantrine compared with sulphadoxine-pyrimethamine during pregnancy. The six-dose regimen of artemether/lumefantrine is therefore well tolerated in a wide range of patient populations. In addition, post-marketing experience, based on the delivery of 250 million treatments as of July 2009, has not identified any new safety concerns for artemether/lumefantrine apart from hypersensitivity and allergies, known class effects of artemisinin derivatives

    Treatment with Imatinib in NSCLC is associated with decrease of phosphorylated PDGFR-β and VEGF expression, decrease in interstitial fluid pressure and improvement of oxygenation

    Get PDF
    Elevated intratumoral interstitial fluid pressure (IFP) and tumour hypoxia are independent predictive factors for poor survival and poor treatment response in cancer patients. However, the relationship between IFP and tumour hypoxia has not yet been clearly established. Preclinical studies have shown that lowering IFP improves treatment response to cytotoxic therapy. Interstitial fluid pressure can be reduced by inhibition of phosphorylated platelet-derived growth factor receptor-β (p-PDGFR-β), a tyrosine kinase receptor frequently overexpressed in cancer stroma, and/or by inhibition of VEGF, a growth factor commonly overexpressed in tumours overexpressing p-PDGFR-β. We hypothesised that Imatinib, a specific PDGFR-β inhibitor will, in addition to p-PDGFR-β inhibition, downregulate VEGF, decrease IFP and improve tumour oxygenation. A549 human lung adenocarcinoma xenografts overexpressing PDGFR-β were grown in nude mice. Tumour-bearing animals were randomised to control and treatment groups (Imatinib 50 mg kg−1 via gavage for 4 days). Interstitial fluid pressure was measured in both groups before and after treatment. EF5, a hypoxia marker, was administered 3 h before being killed. Tumours were sectioned and stained for p-PDGFR-β, VEGF and EF5 binding. Stained sections were viewed with a fluorescence microscope and image analysis was performed. Imatinib treatment resulted in significant reduction of p-PDGFR-β, VEGF and IFP. Tumour oxygenation was also significantly improved. This study shows that p-PDGFR-β-overexpressing tumours can be effectively treated with Imatinib to decrease tumour IFP. Importantly, this is the first study demonstrating that Imatinib treatment improves tumour oxygenation and downregulates tumour VEGF expression

    Effects of Sorafenib on Intra-Tumoral Interstitial Fluid Pressure and Circulating Biomarkers in Patients with Refractory Sarcomas (NCI Protocol 6948)

    Get PDF
    Purpose: Jain Sorafenib is a multi-targeted tyrosine kinase inhibitor with therapeutic efficacy in several malignancies. Sorafenib may exert its anti-neoplastic effect in part by altering vascular permeability and reducing intra-tumoral interstitial hypertension. As correlative science with a phase II study in patients with advanced soft-tissue sarcomas (STS), we evaluated the impact of this agent on intra-tumor interstitial fluid pressure (IFP), serum circulating biomarkers, and vascular density. Patients and Methods: Patients with advanced STS with measurable disease and at least one superficial lesion amenable to biopsy received sorafenib 400 mg twice daily. Intratumoral IFP and plasma and circulating cell biomarkers were measured before and after 1–2 months of sorafenib administration. Results were analyzed in the context of the primary clinical endpoint of time-to-progression (TTP). Results: In 15 patients accrued, the median TTP was 45 days (range 14–228). Intra-tumoral IFP measurements obtained in 6 patients at baseline showed a direct correlation with tumor size. Two patients with stable disease at two months had post-sorafenib IFP evaluations and demonstrated a decline in IFP and vascular density. Sorafenib significantly increased plasma VEGF, PlGF, and SDF1α\alpha and decreased sVEGFR-2 levels. Increased plasma SDF1α\alpha and decreased sVEGFR-2 levels on day 28 correlated with disease progression. Conclusions: Pretreatment intra-tumoral IFP correlated with tumor size and decreased in two evaluable patients with SD on sorafenib. Sorafenib also induced changes in circulating biomarkers consistent with expected VEGF pathway blockade, despite the lack of more striking clinical activity in this small series

    The clinical efficacy of artemether/lumefantrine (Coartem®)

    Get PDF
    Current World Health Organization (WHO) guidelines for the treatment of uncomplicated falciparum malaria recommend the use of artemisinin-based combination therapy (ACT). Artemether/lumefantrine is an ACT prequalified by the WHO for efficacy, safety and quality, approved by Swissmedic in December 2008 and recently approved by the USA FDA. Coartem® is a fixed-dose combination of artemether and lumefantrine. Its two components have different modes of action that provide synergistic anti-malarial activity. It is indicated for the treatment of infants, children and adults with acute, uncomplicated infection due to Plasmodium falciparum or mixed infections including P. falciparum. A formulation with improved palatability has been developed especially for children (Coartem® Dispersible), which rapidly disperses in a small amount of water for ease of administration

    A tumor cord model for Doxorubicin delivery and dose optimization in solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Doxorubicin is a common anticancer agent used in the treatment of a number of neoplasms, with the lifetime dose limited due to the potential for cardiotoxocity. This has motivated efforts to develop optimal dosage regimes that maximize anti-tumor activity while minimizing cardiac toxicity, which is correlated with peak plasma concentration. Doxorubicin is characterized by poor penetration from tumoral vessels into the tumor mass, due to the highly irregular tumor vasculature. I model the delivery of a soluble drug from the vasculature to a solid tumor using a tumor cord model and examine the penetration of doxorubicin under different dosage regimes and tumor microenvironments.</p> <p>Methods</p> <p>A coupled ODE-PDE model is employed where drug is transported from the vasculature into a tumor cord domain according to the principle of solute transport. Within the tumor cord, extracellular drug diffuses and saturable pharmacokinetics govern uptake and efflux by cancer cells. Cancer cell death is also determined as a function of peak intracellular drug concentration.</p> <p>Results</p> <p>The model predicts that transport to the tumor cord from the vasculature is dominated by diffusive transport of free drug during the initial plasma drug distribution phase. I characterize the effect of all parameters describing the tumor microenvironment on drug delivery, and large intercapillary distance is predicted to be a major barrier to drug delivery. Comparing continuous drug infusion with bolus injection shows that the optimum infusion time depends upon the drug dose, with bolus injection best for low-dose therapy but short infusions better for high doses. Simulations of multiple treatments suggest that additional treatments have similar efficacy in terms of cell mortality, but drug penetration is limited. Moreover, fractionating a single large dose into several smaller doses slightly improves anti-tumor efficacy.</p> <p>Conclusion</p> <p>Drug infusion time has a significant effect on the spatial profile of cell mortality within tumor cord systems. Therefore, extending infusion times (up to 2 hours) and fractionating large doses are two strategies that may preserve or increase anti-tumor activity and reduce cardiotoxicity by decreasing peak plasma concentration. However, even under optimal conditions, doxorubicin may have limited delivery into advanced solid tumors.</p

    Real-Time Visualization and Quantitation of Vascular Permeability In Vivo: Implications for Drug Delivery

    Get PDF
    The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors

    Absence of N addition facilitates B cell development, but impairs immune responses

    Get PDF
    The programmed, stepwise acquisition of immunocompetence that marks the development of the fetal immune response proceeds during a period when both T cell receptor and immunoglobulin (Ig) repertoires exhibit reduced junctional diversity due to physiologic terminal deoxynucleotidyl transferase (TdT) insufficiency. To test the effect of N addition on humoral responses, we transplanted bone marrow from TdT-deficient (TdT−/−) and wild-type (TdT+/+) BALB/c mice into recombination activation gene 1-deficient BALB/c hosts. Mice transplanted with TdT−/− cells exhibited diminished humoral responses to the T-independent antigens α-1-dextran and (2,4,6-trinitrophenyl) hapten conjugated to AminoEthylCarboxymethyl-FICOLL, to the T-dependent antigens NP19CGG and hen egg lysozyme, and to Enterobacter cloacae, a commensal bacteria that can become an opportunistic pathogen in immature and immunocompromised hosts. An exception to this pattern of reduction was the T-independent anti-phosphorylcholine response to Streptococcus pneumoniae, which is normally dominated by the N-deficient T15 idiotype. Most of the humoral immune responses in the recipients of TdT−/− bone marrow were impaired, yet population of the blood with B and T cells occurred more rapidly. To further test the effect of N-deficiency on B cell and T cell population growth, transplanted TdT-sufficient and -deficient BALB/c IgMa and congenic TdT-sufficient CB17 IgMb bone marrow were placed in competition. TdT−/− cells demonstrated an advantage in populating the bone marrow, the spleen, and the peritoneal cavity. TdT deficiency, which characterizes fetal lymphocytes, thus appears to facilitate filling both central and peripheral lymphoid compartments, but at the cost of altered responses to a broad set of antigens
    corecore