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Abstract

For limited time the propagation of waves in a
highly oscillatory medium is well-described by the
non-dispersive homogenized wave equation. With in-
creasing time, however, the true solution deviates
from the classical homogenization limit, as a large
secondary wave train develops unexpectedly. Here,
we propose a new finite element heterogeneous mul-
tiscale method (FE-HMM), which captures not only
the short-time macroscale behavior of the wave field
but also those secondary long-time dispersive effects.

1 Long-Time Wave Propagation

Let Ω ⊂ Rn be a domain and T > 0. We consider
the wave equation

∂ttu
ε −∇ · (aε∇uε) = F in Ω× (0, T ),

uε(x, 0) = f(x) in Ω,

∂tu
ε(x, 0) = g(x) in Ω,

(1)

where aε(x) ∈ (L∞(Ω))d×d is symmetric, uniformly
elliptic, and bounded. Here ε > 0 represents a small
scale in the problem, which characterizes the multi-
scale nature of the tensor aε(x). We set either homo-
geneous Dirichlet or periodic boundary conditions to
uniquely determine the solution for every ε > 0.

1.1 Classical homogenization

According to classical homogenization theory, uε

converges to the solution u0 of the “homogenized”
wave equation as ε→ 0,

∂ttu
0 −∇ · (a0∇u0) = F,

where the homogenized tensor (or squared veloc-
ity field) a0 can only rarely be computed explicitly.
Thus, u0 approximates uε but only for short times.
For longer times T ∼ ε−2, the homogenized solu-
tion becomes increasingly inadequate, since it ne-
glects microscopic dispersive effects that accumulate
over time, as shown in Figure 1. Here we consider (1)
in Ω = (−1, 1) with periodic boundary conditions, let
u(x, 0) be a Gaussian pulse with zero initial velocity
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Figure 1: Reference (ref.), homogenized (hom.)
and effective (eff.) solution: short-time (left) and

long-time (right).

and set

aε =
√

2 + sin
(

2π
x

ε

)
with ε =

1

50
. (2)

The reference solution of (1)–(2) corresponds to a
direct numerical simulation (DNS), where the micro-
scale is fully resolved. After one revolution (T = 2),
the homogenized and the DNS solution coincide. Af-
ter fifty revolutions (T = 100), however, the DNS
displays dispersive effects, which the homogenized so-
lution fails to capture.

1.2 Effective dispersive equation

Various formal asymptotic arguments were de-
rived to elucidate that peculiar inherently dispersive
long-time behavior of waves propagating through a
strongly heterogeneous periodic medium [1]. An ef-
fective equation that captures those dispersive effects
was recently derived in [2] for the one-dimensional
case when aε is ε-periodic:

∂tt(u
eff − ε2b∂xxu

eff)− a0∂xxu
eff = F. (3)

Again, a0 denotes the homogenized effective coeffi-
cient from classical homogenization theory and b > 0.
As shown in Figure 1, uε and ueff essentially coincide
both at early and later times.

2 FE Heterogeneous Multiscale Method

In [3], the FE-HMM for elliptic [4] was extended to
the time dependent wave equation. It was shown to
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converge to u0 at finite times, yet it failed to capture
long-time dispersive effects in the true solution. To
incorporate those dispersive effects, we not only need
an effective bilinear form but also an effective inner
product, akin to the weak formulation of (3). Both
require the numerical solutions of micro problems on
sampling domains Iδ of size δ proportional to ε. An
alternative HMM scheme, based on the finite differ-
ence approximation of an effective flux, was proposed
in [5].

We now give a description of the algorithm: First,
we generate a macro triangulation TH and choose an
appropriate macro FE space S(Ω, TH). By macro we
mean that H � ε is allowed. Within each macro
element K ∈ TH we choose a quadrature formula
{xK,j , ωK,j}. The HMM solution uH is given by the
following variational problem:

Find uH : [0, T ]→ S(Ω, TH) such that

(∂ttuH , vH)H +BH(uH , vH) = (F, vH)

for all vH ∈ S(Ω, TH) and,

uH(0) = fH , ∂tuH(0) = gH in Ω,

(4)

where the initial data fH and gh are suitable approx-
imations of f and g in S(Ω, TH), (·, ·)H and BH are
defined below. Since (·, ·)H is an inner product and
the bilinear form BH is elliptic and bounded, the FE-
HMM is well defined.

The FE-HMM inner product is defined by

(vH , wH)H :=
∑
K,j

ωK,j
|Iδ|
·∫

Iδ

(vH(xK,j) + vh(y))(wH(xK,j) + wh(y)) dy,

and the FE-HMM bilinear form by

BH(vH , wH) :=
∑
K,j

ωK,j
|Iδ|
·∫

Iδ

aε(y)(∇vH(xK,j)+∇vh)·(∇wH(xK,j)+∇wh) dy,

where vh (resp. wh) is the solution of the micro prob-
lem

Find vh ∈ S(Iδ, Th) such that∫
Iδ

aε(y)(∇vH(xK,j) +∇vh(y)) · ∇zh(y) dy = 0,

for all zh ∈ S(Iδ, Th).
(5)

Here S(Iδ, Th) is a micro FE space on the sampling
domain Iδ with a micro triangulation Th.

−1 −0.5 0 0.5 1

0

0.5

1

T=100

ref.

HMM (see [3])

HMM (new)

Figure 2: Reference solution (ref.), FE-HMM from
[3] and new FE-HMM.

3 Numerical Experiments

We again apply our FE-HMM, defined in (4), to
(1)–(2) as in Figure 1. We use cubic FE at the macro-
and the micro-scale, with mesh sizes H = 1/75 and
h = ε/20 = 1/1000. Note that linear or quadratic finite
elements could also be used. For time-stepping we
use a standard Leap-Frog scheme, with ∆t = H/10.
As shown in Figure 2, the new FE-HMM succeeds in
capturing, the long-time effects in the true solution.
In contrast, the solution of the FE-HMM of [3] is
unable to capture those dispersive effects, since this
solution was proven to converge to the homogenized
solution, u0, as ε→ 0 on finite time intervals.
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