616 research outputs found

    Laser induced breakdown spectroscopy for heavy metal detection in a sand matrix

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spectrochimica Acta Part B: Atomic Spectroscopy 125 (2016):177-183, doi:10.1016/j.sab.2016.10.001.Sediments in many locations, including harbors and coastal areas, can become contaminated and polluted, for example, from anthropogenic inputs, shipping, human activities, and poor waste management. Sampling followed by laboratory analysis has been the traditional methodology for such analysis. In order to develop rapid methodologies for eld analysis of sediment samples, especially for metals analyses, we look to Laser Induced Breakdown Spectroscopy as an option. Here through laboratory experiments, we demonstrate that dry sand samples can be rapidly analyzed for the detection of the heavy metals chromium, zinc, lead, and copper. We also demonstrate that cadmium and nickel are detectable in sand matrices at high concentrations.This work is supported by funding from the National Science Foundation (OCE-RIG: 1322704) and the Woods Hole Oceanographic Institution by The Penzance Endowed Fund in Support of Assistant Scientists and The Reuben F. and Elizabeth B. Richards Endowed Fund in Support of Scienti c Sta .2018-10-0

    Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells

    Full text link
    Spatial modulation microscopy is a technique originally developed for quantitative spectroscopy of individual nano-objects. Here, a parallel implementation of the spatial modulation microscopy technique is demonstrated based on a line detector capable of demodulation at kHz frequencies. The capabilities of the imaging system are shown using an array of plasmonic nanoantennas and dendritic cells incubated with gold nanoparticles.Comment: 3 pages, 4 figure

    Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation

    Full text link
    The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have been studied within the framework of the quasistatic approximation. A general method has been proposed for finding the analytical expressions describing the potential and frequencies of the plasmon oscillations of an arbitrary multipolarity order. The analytical expressions have been derived for an electric potential and plasmon oscillation frequencies of the first 24 modes. Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Metal nanoparticles in strongly confined beams: transmission, reflection and absorption

    Get PDF
    We investigate the interaction of tightly focused light with the surface-plasmon-polariton resonances of metal nanospheres. In particular, we compute the scattering and absorption ratios as well as transmission and reflection coefficients. Inspired by our previous work in Ref. [1], we discuss how well a metal nanoparticle approximates a point-like dipolar radiator. We find that a 100 nm silver nanosphere is very close to such an ideal oscillator. Our results have immediate implications for single nanoparticle spectroscopy and microscopy as well as plasmonics.Comment: 6 pages, 4 figure

    A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    Get PDF
    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research

    The effectiveness of the Austrian disease management programme for type 2 diabetes: a cluster-randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disease management programmes (DMPs) are costly and impose additional work load on general practitioners (GPs). Data on their effectiveness are inconclusive. We therefore conducted a cluster-randomised controlled trial to evaluate the effectiveness of the Austrian DMP for diabetes mellitus type 2 on HbA1c and quality of care for adult patients in primary care.</p> <p>Methods</p> <p>All GPs of Salzburg-province were invited to participate. After cluster-randomisation by district, all patients with diabetes type 2 were recruited consecutively from 7-11/2007. The DMP, consisting mainly of physician and patient education, standardised documentation and agreement on therapeutic goals, was implemented in the intervention group while the control group received usual care. We aimed to show superiority of the intervention regarding metabolic control and process quality. The primary outcome measure was a change in HbA1c after one year. Secondary outcomes were days in the hospital, blood pressure, lipids, body mass index (BMI), enrolment in patient education and regular guideline-adherent examination. Blinding was not possible.</p> <p>Results</p> <p>92 physicians recruited 1489 patients (649 intervention, 840 control). After 401 ± 47 days, 590 intervention-patients and 754 controls had complete data. In the intention to treat analysis (ITT) of all 1489 patients, HbA1c decreased 0.41% in the intervention group and 0.28% in controls. The difference of -0.13% (95% CI -0.24; -0.02) was significant at p = 0.026. Significance was lost in mixed models adjusted for baseline value and cluster-effects (adjusted mean difference -0.03 (95% CI -0.15; 0.09, p = 0.607). Of the secondary outcome measures, BMI and cholesterol were significantly reduced in the intervention group compared to controls in ITT after adjustments (-0.53 kg/mÂČ; 95% CI -1.03;-0.02; p = 0.014 and -0.10 mmol/l; 95% CI -0.21; -0.003; p = 0.043). Additionally, more patients received patient education (49.5% vs. 20.1%, p < 0.0001), eye- (71.0% vs. 51.2%, p < 0.0001), foot examinations (73.8% vs. 45.1%, p < 0.0001), and regular HbA1c checks (44.1% vs. 36.0%, p < 0.01) in the intervention group.</p> <p>Conclusion</p> <p>The Austrian DMP implemented by statutory health insurance improves process quality and enhances weight reduction, but does not significantly improve metabolic control for patients with type 2 diabetes mellitus. Whether the small benefit seen in secondary outcome measures leads to better patient outcomes, remains unclear.</p> <p>Trial Registration</p> <p>Current Controlled trials Ltd., ISRCTN27414162.</p

    ‘What Do I Get?’ Punk Objects as Meaningful and Valuable Souvenirs

    Get PDF
    Despite social scientists’ increasing interest on souvenirs in tourism, little has been written on the role and meanings of souvenirs within specific subcultures, such as punk subcultures. This chapter focuses on the exploration of punk objects as potential souvenirs in relation to “punk tourism” by investigating the meanings attached to subcultural artefacts as opposed to mass produced products. As part of an ethnographic fieldwork on punk tourism that the two authors have been conducting in Malaysia since 2016, in this chapter we focus on the role and meanings of punk souvenirs within the Malaysian punk scene. As the empirical material presented in this chapter shows, a DIY produced punk product has the advantage of channelling more than one value. While the value of souvenirs lies in their propensity to act as “mnemonic devices” related to a place visited, subcultural products like those produced by punks have the potential to fulfil additional values. In an age where authenticity and claims of appropriation of culture are placed under scrutiny, a punk object holds the potential of being a meaningful and valuable souvenir
    • 

    corecore