60 research outputs found
Packing Hyperspheres in High-Dimensional Euclidean Spaces
We present the first study of disordered jammed hard-sphere packings in
four-, five- and six-dimensional Euclidean spaces. Using a collision-driven
packing generation algorithm, we obtain the first estimates for the packing
fractions of the maximally random jammed (MRJ) states for space dimensions
, 5 and 6 to be , 0.31 and 0.20, respectively. To
a good approximation, the MRJ density obeys the scaling form , where and , which appears to be
consistent with high-dimensional asymptotic limit, albeit with different
coefficients. Calculations of the pair correlation function and
structure factor for these states show that short-range ordering
appreciably decreases with increasing dimension, consistent with a recently
proposed ``decorrelation principle,'' which, among othe things, states that
unconstrained correlations diminish as the dimension increases and vanish
entirely in the limit . As in three dimensions (where ), the packings show no signs of crystallization, are isostatic,
and have a power-law divergence in at contact with power-law
exponent . Across dimensions, the cumulative number of neighbors
equals the kissing number of the conjectured densest packing close to where
has its first minimum. We obtain estimates for the freezing and
melting desnities for the equilibrium hard-sphere fluid-solid transition,
and , respectively, for , and
and , respectively, for .Comment: 28 pages, 9 figures. To appear in Physical Review
Black Hole-Neutron Star Binaries in General Relativity: Quasiequilibrium Formulation
We present a new numerical method for the construction of quasiequilibrium
models of black hole-neutron star binaries. We solve the constraint equations
of general relativity, decomposed in the conformal thin-sandwich formalism,
together with the Euler equation for the neutron star matter. We take the
system to be stationary in a corotating frame and thereby assume the presence
of a helical Killing vector. We solve these coupled equations in the background
metric of a Kerr-Schild black hole, which accounts for the neutron star's black
hole companion. In this paper we adopt a polytropic equation of state for the
neutron star matter and assume large black hole--to--neutron star mass ratios.
These simplifications allow us to focus on the construction of quasiequilibrium
neutron star models in the presence of strong-field, black hole companions. We
summarize the results of several code tests, compare with Newtonian models, and
locate the onset of tidal disruption in a fully relativistic framework.Comment: 17 pages, 7 figures; added discussion, tables; PRD in pres
Gauge conditions for binary black hole puncture data based on an approximate helical Killing vector
We show that puncture data for quasicircular binary black hole orbits allow a
special gauge choice that realizes some of the necessary conditions for the
existence of an approximate helical Killing vector field. Introducing free
parameters for the lapse at the punctures we can satisfy the condition that the
Komar and ADM mass agree at spatial infinity. Several other conditions for an
approximate Killing vector are then automatically satisfied, and the 3-metric
evolves on a timescale smaller than the orbital timescale. The time derivative
of the extrinsic curvature however remains significant. Nevertheless,
quasicircular puncture data are not as far from possessing a helical Killing
vector as one might have expected.Comment: 11 pages, 6 figures, 2 table
Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture
Sequences of initial-data sets representing binary black holes in
quasi-circular orbits have been used to calculate what may be interpreted as
the innermost stable circular orbit. These sequences have been computed with
two approaches. One method is based on the traditional
conformal-transverse-traceless decomposition and locates quasi-circular orbits
from the turning points in an effective potential. The second method uses a
conformal-thin-sandwich decomposition and determines quasi-circular orbits by
requiring the existence of an approximate helical Killing vector. Although the
parameters defining the innermost stable circular orbit obtained from these two
methods differ significantly, both approaches yield approximately the same
initial data, as the separation of the binary system increases. To help
understanding this agreement between data sets, we consider the case of initial
data representing a single boosted or spinning black hole puncture of the
Bowen-York type and show that the conformal-transverse-traceless and
conformal-thin-sandwich methods yield identical data, both satisfying the
conditions for the existence of an approximate Killing vector.Comment: 13 pages, 2 figure
Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasi-equilibrium?
We consider combining two important methods for constructing
quasi-equilibrium initial data for binary black holes: the conformal
thin-sandwich formalism and the puncture method. The former seeks to enforce
stationarity in the conformal three-metric and the latter attempts to avoid
internal boundaries, like minimal surfaces or apparent horizons. We show that
these two methods make partially conflicting requirements on the boundary
conditions that determine the time slices. In particular, it does not seem
possible to construct slices that are quasi-stationary and avoid physical
singularities and simultaneously are connected by an everywhere positive lapse
function, a condition which must obtain if internal boundaries are to be
avoided. Some relaxation of these conflicting requirements may yield a soluble
system, but some of the advantages that were sought in combining these
approaches will be lost.Comment: 8 pages, LaTeX2e, 2 postscript figure
Photon Management in Two-Dimensional Disordered Media
Elaborating reliable and versatile strategies for efficient light coupling
between free space and thin films is of crucial importance for new technologies
in energy efficiency. Nanostructured materials have opened unprecedented
opportunities for light management, notably in thin-film solar cells. Efficient
coherent light trapping has been accomplished through the careful design of
plasmonic nanoparticles and gratings, resonant dielectric particles and
photonic crystals. Alternative approaches have used randomly-textured surfaces
as strong light diffusers to benefit from their broadband and wide-angle
properties. Here, we propose a new strategy for photon management in thin films
that combines both advantages of an efficient trapping due to coherent optical
effects and broadband/wide-angle properties due to disorder. Our approach
consists in the excitation of electromagnetic modes formed by multiple light
scattering and wave interference in two-dimensional random media. We show, by
numerical calculations, that the spectral and angular responses of thin films
containing disordered photonic patterns are intimately related to the in-plane
light transport process and can be tuned through structural correlations. Our
findings, which are applicable to all waves, are particularly suited for
improving the absorption efficiency of thin-film solar cells and can provide a
novel approach for high-extraction efficiency light-emitting diodes
Recommended from our members
Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell
Mathematical modeling of bacterial chemotaxis systems has been influential and insightful in helping to understand experimental observations. We provide here a comprehensive overview of the range of mathematical approaches used for modeling, within a single bacterium, chemotactic processes caused by changes to external gradients in its environment. Specific areas of the bacterial system which have been studied and modeled are discussed in detail, including the modeling of adaptation in response to attractant gradients, the intracellular phosphorylation cascade, membrane receptor clustering, and spatial modeling of intracellular protein signal transduction. The importance of producing robust models that address adaptation, gain, and sensitivity are also discussed. This review highlights that while mathematical modeling has aided in understanding bacterial chemotaxis on the individual cell scale and guiding experimental design, no single model succeeds in robustly describing all of the basic elements of the cell. We conclude by discussing the importance of this and the future of modeling in this area
Chemotactic response and adaptation dynamics in Escherichia coli
Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia
coli is integral for detecting chemicals over a wide range of background
concentrations, ultimately allowing cells to swim towards sources of attractant
and away from repellents. Its biochemical mechanism based on methylation and
demethylation of chemoreceptors has long been known. Despite the importance of
adaptation for cell memory and behavior, the dynamics of adaptation are
difficult to reconcile with current models of precise adaptation. Here, we
follow time courses of signaling in response to concentration step changes of
attractant using in vivo fluorescence resonance energy transfer measurements.
Specifically, we use a condensed representation of adaptation time courses for
efficient evaluation of different adaptation models. To quantitatively explain
the data, we finally develop a dynamic model for signaling and adaptation based
on the attractant flow in the experiment, signaling by cooperative receptor
complexes, and multiple layers of feedback regulation for adaptation. We
experimentally confirm the predicted effects of changing the enzyme-expression
level and bypassing the negative feedback for demethylation. Our data analysis
suggests significant imprecision in adaptation for large additions.
Furthermore, our model predicts highly regulated, ultrafast adaptation in
response to removal of attractant, which may be useful for fast reorientation
of the cell and noise reduction in adaptation.Comment: accepted for publication in PLoS Computational Biology; manuscript
(19 pages, 5 figures) and supplementary information; added additional
clarification on alternative adaptation models in supplementary informatio
Structural transitions in granular packs: statistical mechanics and statistical geometry investigations
We investigate equal spheres packings generated from several experiments and
from a large number of different numerical simulations. The structural
organization of these disordered packings is studied in terms of the network of
common neighbours. This geometrical analysis reveals sharp changes in the
network's clustering occurring at the packing fractions (fraction of volume
occupied by the spheres respect to the total volume, ) corresponding to
the so called Random Loose Packing limit (RLP, ) and Random
Close Packing limit (RCP, ). At these packing fractions we
also observe abrupt changes in the fluctuations of the portion of free volume
around each sphere. We analyze such fluctuations by means of a statistical
mechanics approach and we show that these anomalies are associated to sharp
variations in a generalized thermodynamical variable which is the analogous for
these a-thermal systems to the specific heat in thermal systems.Comment: 7 pages, 6 figure
Chemotaxis of Cell Populations through Confined Spaces at Single-Cell Resolution
Cell migration is crucial for both physiological and pathological processes. Current in vitro cell motility assays suffer from various drawbacks, including insufficient temporal and/or optical resolution, or the failure to include a controlled chemotactic stimulus. Here, we address these limitations with a migration chamber that utilizes a self-sustaining chemotactic gradient to induce locomotion through confined environments that emulate physiological settings. Dynamic real-time analysis of both population-scale and single-cell movement are achieved at high resolution. Interior surfaces can be functionalized through adsorption of extracellular matrix components, and pharmacological agents can be administered to cells directly, or indirectly through the chemotactic reservoir. Direct comparison of multiple cell types can be achieved in a single enclosed system to compare inherent migratory potentials. Our novel microfluidic design is therefore a powerful tool for the study of cellular chemotaxis, and is suitable for a wide range of biological and biomedical applications
- …