24 research outputs found

    Universal quantum Controlled-NOT gate

    Full text link
    An investigation of an optimal universal unitary Controlled-NOT gate that performs a specific operation on two unknown states of qubits taken from a great circle of the Bloch sphere is presented. The deep analogy between the optimal universal C-NOT gate and the `equatorial' quantum cloning machine (QCM) is shown. In addition, possible applications of the universal C-NOT gate are briefly discussed.Comment: 18 reference

    Quantum computing with mixed states

    Full text link
    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.Comment: 2 figures, 52 reference

    Entanglement dynamics of three-qubit states in noisy channels

    Full text link
    We study entanglement dynamics of the three-qubit system which is initially prepared in pure Greenberger-Horne- Zeilinger (GHZ) or W state and transmitted through one of the Pauli channels σz, σx, σy\sigma_z, \, \sigma_x, \, \sigma_y or the depolarizing channel. With the help of the lower bound for three-qubit concurrence we show that the W state preserves more entanglement than the GHZ state in transmission through the Pauli channel σz\sigma_z. For the Pauli channels σx, σy\sigma_x, \, \sigma_y and the depolarizing channel, however, the entanglement of the GHZ state is more resistant against decoherence than the W-type entanglement. We also briefly discuss how the accuracy of the lower bound approximation depends on the rank of the density matrix under consideration.Comment: 2 figures, 32 reference

    Quantum discord evolution of three-qubit states under noisy channels

    Full text link
    We investigated the dissipative dynamics of quantum discord for correlated qubits under Markovian environments. The basic idea in the present scheme is that quantum discord is more general, and possibly more robust and fundamental, than entanglement. We provide three initially correlated qubits in pure Greenberger-Horne-Zeilinger (GHZ) or W state and analyse the time evolution of the quantum discord under various dissipative channels such as: Pauli channels σx\sigma_{x}, σy\sigma_{y}, and σz\sigma_{z}, as well as depolarising channels. Surprisingly, we find that under the action of Pauli channel σx\sigma_{x}, the quantum discord of GHZ state is not affected by decoherence. For the remaining dissipative channels, the W state is more robust than the GHZ state against decoherence. Moreover, we compare the dynamics of entanglement with that of the quantum discord under the conditions in which disentanglement occurs and show that quantum discord is more robust than entanglement except for phase flip coupling of the three qubits system to the environment.Comment: 17 pages, 4 figures, accepted for publication in EPJ

    Defeating entanglement sudden death by a single local filtering

    No full text

    Quantum entanglement percolation

    No full text
    corecore