122 research outputs found

    Neutrino emission from dark matter annihilation/decay in light of cosmic e±e^{\pm} and pˉ\bar{p} data

    Full text link
    A self-consistent global fitting method based on the Markov Chain Monte Carlo technique to study the dark matter (DM) property associated with the cosmic ray electron/positron excesses was developed in our previous work. In this work we further improve the previous study to include the hadronic branching ratio of DM annihilation/decay. The PAMELA pˉ/p\bar{p}/p data are employed to constrain the hadronic branching ratio. We find that the 95% (2σ2\sigma) upper limits of the quark branching ratio allowed by the PAMELA pˉ/p\bar{p}/p data is 0.032\sim 0.032 for DM annihilation and 0.044\sim 0.044 for DM decay respectively. This result shows that the DM coupling to pure leptons is indeed favored by the current data. Based on the global fitting results, we further study the neutrino emission from DM in the Galactic center. Our predicted neutrino flux is some smaller than previous works since the constraint from γ\gamma-rays is involved. However, it is still capable to be detected by the forth-coming neutrino detector such as IceCube. The improved points of the present study compared with previous works include: 1) the DM parameters, both the particle physical ones and astrophysical ones, are derived in a global fitting way, 2) constraints from various species of data sets, including γ\gamma-rays and antiprotons are included, and 3) the expectation of neutrino emission is fully self-consistent.Comment: 13 pages, 2 figures, 1 table; Published in IJMPA 201

    The SDSS Coadd: Cross-Correlation Weak Lensing and Tomography of Galaxy Clusters

    Full text link
    The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect in Stripe 82, a 275 square degree region observed multiple times in the Sloan Digital Sky Survey and coadded to achieve greater depth. We obtain a mass-richness calibration that is similar to other SDSS analyses, demonstrating that the coaddition process did not adversely affect the lensing signal. We also propose a new parameterization of the effect of tomography on the cluster lensing signal which does not require binning in redshift, and we show that using this parameterization we can detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the tomographic detection to accurately marginalizing over the effect of the cluster mass, we show that tomography at low redshift (where dependence on exact cosmological models is weak) can be used to constrain mass profiles in clusters.Comment: 8 pages, 13 figures, submitted to ApJ. Analysis updated using revised photo-z catalog of Reis et al. arXiv:1111.6620v2. Changes in results are within the errors and the conclusions are unaffecte

    New Constraints from PAMELA anti-proton data on Annihilating and Decaying Dark Matter

    Get PDF
    Recently the PAMELA experiment has released its updated anti-proton flux and anti-proton to proton flux ratio data up to energies of ~200GeV. With no clear excess of cosmic ray anti-protons at high energies, one can extend constraints on the production of anti-protons from dark matter. In this letter, we consider both the cases of dark matter annihilating and decaying into standard model particles that produce significant numbers of anti-protons. We provide two sets of constraints on the annihilation cross-sections/decay lifetimes. In the one set of constraints we ignore any source of anti-protons other than dark matter, which give the highest allowed cross-sections/inverse lifetimes. In the other set we include also anti-protons produced in collisions of cosmic rays with interstellar medium nuclei, getting tighter but more realistic constraints on the annihilation cross-sections/decay lifetimes.Comment: 7 pages, 3 figures, 3 table

    Robust implications on Dark Matter from the first FERMI sky gamma map

    Full text link
    We derive robust model-independent bounds on DM annihilations and decays from the first year of FERMI gamma-ray observations of the whole sky. These bounds only have a mild dependence on the DM density profile and allow the following DM interpretations of the PAMELA and FERMI electron/positron excesses: primary channels mu+ mu-, mu+ mu-mu+mu- or e+ e- e+ e-. An isothermal-like density profile is needed for annihilating DM. In all such cases, FERMI gamma spectra must contain a significant DM component, that may be probed in the future.Comment: 16 pages, 8 figures. Final versio

    The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    Full text link
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying, physically-motivated blurring kernel; and combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.Comment: 30 pages, 13 figures, submitted for publication, with minor edits (v2) to address comments from the anonymous referee. Simulated data are available for download and participants can find more information at http://great3.projects.phys.ucl.ac.uk/leaderboard

    A New Approach to Searching for Dark Matter Signals in Fermi-LAT Gamma Rays

    Full text link
    Several cosmic ray experiments have measured excesses in electrons and positrons, relative to standard backgrounds, for energies from ~ 10 GeV - 1 TeV. These excesses could be due to new astrophysical sources, but an explanation in which the electrons and positrons are dark matter annihilation or decay products is also consistent. Fortunately, the Fermi-LAT diffuse gamma ray measurements can further test these models, since the electrons and positrons produce gamma rays in their interactions in the interstellar medium. Although the dark matter gamma ray signal consistent with the local electron and positron measurements should be quite large, as we review, there are substantial uncertainties in the modeling of diffuse backgrounds and, additionally, experimental uncertainties that make it difficult to claim a dark matter discovery. In this paper, we introduce an alternative method for understanding the diffuse gamma ray spectrum in which we take the intensity ratio in each energy bin of two different regions of the sky, thereby canceling common systematic uncertainties. For many spectra, this ratio fits well to a power law with a single break in energy. The two measured exponent indices are a robust discriminant between candidate models, and we demonstrate that dark matter annihilation scenarios can predict index values that require "extreme" parameters for background-only explanations.Comment: v1: 11 pages, 7 figures, 1 table, revtex4; v2: 13 pages, 8 figures, 1 table, revtex4, Figure 4 added, minor additions made to text, references added, conclusions unchanged, published versio

    Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter

    Full text link
    In recent years, a number of experiments have been conducted with the goal of studying cosmic rays at GeV to TeV energies. This is a particularly interesting regime from the perspective of indirect dark matter detection. To draw reliable conclusions regarding dark matter from cosmic ray measurements, however, it is important to first understand the propagation of cosmic rays through the magnetic and radiation fields of the Milky Way. In this paper, we constrain the characteristics of the cosmic ray propagation model through comparison with observational inputs, including recent data from the CREAM experiment, and use these constraints to estimate the corresponding uncertainties in the spectrum of cosmic ray electrons and positrons from dark matter particles annihilating in the halo of the Milky Way.Comment: 21 pages, 9 figure

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by 1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    Studies of active galactic nuclei with CTA

    Full text link
    In this paper, we review the prospects for studies of active galactic nuclei (AGN) using the envisioned future Cherenkov Telescope Array (CTA). This review focuses on jetted AGN, which constitute the vast majority of AGN detected at gamma-ray energies. Future progress will be driven by the planned lower energy threshold for very high energy (VHE) gamma-ray detections to ~10 GeV and improved flux sensitivity compared to current-generation Cherenkov Telescope facilities. We argue that CTA will enable substantial progress on gamma-ray population studies by deepening existing surveys both through increased flux sensitivity and by improving the chances of detecting a larger number of low-frequency peaked blazars because of the lower energy threshold. More detailed studies of the VHE gamma-ray spectral shape and variability might furthermore yield insight into unsolved questions concerning jet formation and composition, the acceleration of particles within relativistic jets, and the microphysics of the radiation mechanisms leading to the observable high-energy emission. The broad energy range covered by CTA includes energies where gamma-rays are unaffected from absorption while propagating in the extragalactic background light (EBL), and extends to an energy regime where VHE spectra are strongly distorted. This will help to reduce systematic effects in the spectra from different instruments, leading to a more reliable EBL determination, and hence will make it possible to constrain blazar models up to the highest energies with less ambiguity.Comment: invited review article, 15 pages, 9 figures, Astroparticle Physics, Special Issue on Physics with the Cherenkov Telescope Array, in pres
    corecore