53 research outputs found

    Leaf N resorption efficiency and litter N mineralization rate have a genotypic tradeoff in a silver birch population

    Get PDF
    Plants enhance N use efficiency by resorbing N from senescing leaves. This can affect litter N mineralization rate due to the C:N-ratio requirements of microbial growth. We examined genotypic links between leaf N resorption and litter mineralization by collecting leaves and litter from 19 Betula pendula genotypes and following the N release of litter patches on forest ground. We found significant genotypic variation for N resorption efficiency, litter N concentration, cumulative three-year patch N-input and litter N release with high broad-sense heritabilities (H-2 = 0.28-0.65). The genotype means of N resorption efficiency varied from 46% to 65% and correlated negatively with the genotype means of litter N concentration, cumulative patch N-input and litter N release. NH4+ yield under patches had a positive genotypic correlation with the cumulative patch N-input. During the first year of litter decomposition, genotypes varied from N immobilization (max 2.71 mg/g dry litter) to N release (max 1.41 mg/g dry litter), creating a genotypic tradeoff between the N conserved by resorption and the N available for root uptake during the growing season. We speculate that this tradeoff is one likely reason for the remarkably wide genotypic range of N resorption efficiencies in our birch population.Peer reviewe

    Insect herbivory dampens Subarctic birch forest C sink response to warming

    Get PDF
    Climate warming is anticipated to make high latitude ecosystems stronger C sinks through increasing plant production. This effect might, however, be dampened by insect herbivores whose damage to plants at their background, non-outbreak densities may more than double under climate warming. Here, using an open-air warming experiment among Subarctic birch forest field layer vegetation, supplemented with birch plantlets, we show that a 2.3 degrees C air and 1.2 degrees C soil temperature increase can advance the growing season by 1-4 days, enhance soil N availability, leaf chlorophyll concentrations and plant growth up to 400%, 160% and 50% respectively, and lead up to 122% greater ecosystem CO2 uptake potential. However, comparable positive effects are also found when insect herbivory is reduced, and the effect of warming on C sink potential is intensified under reduced herbivory. Our results confirm the expected warming-induced increase in high latitude plant growth and CO2 uptake, but also reveal that herbivorous insects may significantly dampen the strengthening of the CO2 sink under climate warming. Warming is expected to increase C sink capacity in high-latitude ecosystems, but plant-herbivore interactions could moderate or offset this effect. Here, Silfver and colleagues test individual and interactive effects of warming and insect herbivory in a field experiment in Subarctic forest, showing that even low intensity insect herbivory strongly reduces C sink potential

    Just a game? Unjustified virtual violence produces guilt in empathetic players

    Get PDF
    Many avid gamers discount violent conduct in video games as morally insignificant as "it is just a game." However, recent debates among users, regarding video games featuring inappropriate forms of virtual violence, suggest a more complex truth. Two ex- periments (

    Genetic and environmental determinants of insect herbivore community structure in a Betula pendula population [v1; ref status: indexed, http://f1000r.es/2pd]

    No full text
    A number of recent studies have shown that intraspecific genetic variation of plants may have a profound effect on the herbivorous communities which depend on them. However less is known about the relative importance of intraspecific variation compared to other ecological factors, for example environmental variation or the effects of herbivore damage. We randomly selected 22 Betula pendula genotypes from a local population (< 0.9 ha), cloned them and planted cloned seedlings on two study sites separated at a regional scale (distance between sites about 30 km) to examine an insect community of 23-27 species on these genotypes. B. pendula genotypes did not differ in their species richness, but the total mean abundance and the structure of the insect herbivore community was significantly affected by the genotype, which could account for up to 27% of the total variation in community structure. B. pendula genotype accounted for two to four times more variation in the arthropod community structure than did environmental (block) variation on a local scale, while on a regional scale, genotypic and environmental (site) variation accounted for 4-14% of the arthropod community structure. The genetic effects were modified by environmental variation on both a local and regional scale over one study year, and locally, the largest part of the variation (38%) could be explained by the genotype × environment (block) interactions. Suppression of insect herbivores during one growing season led to changed arthropod community structure in the following growing season, but this effect was minimal and could explain only 4% of the total variation in insect community structure. Our results suggest that both genetic and environmental factors are important determinants of the community structure of herbivorous insects. Together these mechanisms appear to maintain the high diversity of insects in B. pendula forest ecosystems

    Leaf litter decomposition differs among genotypes in a local Betula pendula population

    No full text
    corecore