244 research outputs found
XANES study of rare-earth valency in LRu4P12 (L = Ce and Pr)
Valency of Ce and Pr in LRu4P12 (L = Ce and Pr) was studied by L2,3-edge
x-ray absorption near-edge structure (XANES) spectroscopy. The Ce-L3 XANES
spectrum suggests that Ce is mainly trivalent, but the 4f state strongly
hybridizes with ligand orbitals. The band gap of CeRu4P12 seems to be formed by
strong hybridization of 4f electrons. Pr-L2 XANES spectra indicate that Pr
exists in trivalent state over a wide range in temperature, 20 < T < 300 K. We
find that the metal-insulator (MI) transition at TMI = 60 K in PrRu4P12 does
not originate from Pr valence fluctuation.Comment: 4 page
Metal-insulator transition in PrRuP and SmRuP investigated by optical spectroscopy
Electronic structures of the filled-skutterudite compounds PrRuP
and SmRuP, which undergo a metal-insulator transition (MIT) at
= 60 K and 16 K, respectively, have been studied by means of
optical spectroscopy. Their optical conductivity spectra develop an energy gap
of 10 meV below . The observed characteristics of the energy
gap are qualitatively different from those of the Kondo semiconductors. In
addition, optical phonon peaks in the spectra show anomalies upon the MIT,
including broadening and shifts at and an appearance of new peaks
below . These results are discussed in terms of density waves or
orbital ordering previously predicted for these compounds.Comment: 4pages, 4figures, submitted to Physical Review
31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State
The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation)
measurements on the filled skutterudite system SmFe4P12 have been carried out.
The temperature T dependence of the 31P-NMR spectra indicates the existence of
the crystalline electric field effect splitting of the Sm3+$ (J = 5/2)
multiplet into a ground state and an excited state of about 70 K. The
spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo
system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion
to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T
dependence deviated from the Korringa behavior below 7 K, which is independent
of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher
fields. The behavior is explained as 1/T1is determined by ferromagnetic
fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons.
The muSR measurements in zero field show the appearance of a static internal
field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
Superconductivity and the high field ordered phase in the heavy fermion compound PrOsSb
Superconductivity is observed in the filled skutterudite compound \PrOsSb{}
below a critical temperature temperature K and appears to
develop out of a nonmagnetic heavy Fermi liquid with an effective mass , where is the free electron mass.
Features associated with a cubic crystalline electric field are present in
magnetic susceptibility, specific heat, electrical resistivity, and inelastic
neutron scattering measurements, yielding a Pr energy level scheme
consisting of a nonmagnetic doublet ground state, a low lying
triplet excitied state at K, and much higher temperature
triplet and singlet excited states. Measurements also
indicate that the superconducting state is unconventional and consists of two
distinct superconducting phases. At high fields and low temperatures, an
ordered phase of magnetic or quadrupolar origin is observed, suggesting that
the superconductivity may occur in the vicinity of a magnetic or quadrupolar
quantum critical point.Comment: 11 pages, 4 figures, presented at the 3rd international symposium on
Advance Science Research (ASR 2002), JAERI Tokai, Ibaraki, Japa
Anomalous elastic softening of SmRu_{4}P_{12} under high pressure
The filled skutterudite compound SmRu_4P_{12} undergoes a complex evolution
from a paramagnetic metal (phase I) to a probable multipolar ordering insulator
(phase II) at T_{MI} = 16.5 K, then to a magnetically ordered phase (phase III)
at T_{N} = 14 K. Elastic properties under hydrostatic pressures were
investigated to study the nature of the ordering phases. We found that distinct
elastic softening above T_{MI} is induced by pressure, giving evidence of
quadrupole degeneracy of the ground state in the crystalline electric field. It
also suggests that quadrupole moment may be one of the order parameters below
T_{MI} under pressure. Strangely, the largest degree of softening is found in
the transverse elastic constant C_{T} at around 0.5-0.6 GPa, presumably having
relevancy to the competing and very different Gruneisen parameters \Omega of
T_{MI} and T_{N}. Interplay between the two phase transitions is also verified
by the rapid increase of T_{MI} under pressure with a considerably large \Omega
of 9. Our results can be understood on the basis of the proposed octupole
scenario for SmRu_4P_{12}.Comment: 7 pages, 7 figure
Optical Properties of MFe_4P_12 filled skutterudites
Infrared reflectance spectroscopy measurements were made on four members of
the MFe_4P_12 family of filled skutterudites, with M=La, Th, Ce and U. In
progressing from M=La to U the system undergoes a metal-insulator transition.
It is shown that, although the filling atom induces such dramatic changes in
the transport properties of the system, it has only a small effect on lattice
dynamics. We discuss this property of the compounds in the context of their
possible thermoelectric applications.Comment: Manuscript in ReVTeX format, 7 figures in PostScirpt forma
Isostructural Phase Transition of TiN Under High Pressure
In situ high-pressure energy dispersive x-ray diffraction experiments on
polycrystalline powder TiN with NaCl-type structure have been conducted with
the pressure up to 30.1 GPa by using the diamond anvil cell instrument with
synchrotron radiation at room tempearture. The experimental results suggested
that an isostructural phase transition might exist at about 7 GPa as revealed
by the discontinuity of V/V0 with pressure.Comment: submitte
Assembling the puzzle of superconducting elements: A Review
Superconductivity in the simple elements is of both technological relevance
and fundamental scientific interest in the investigation of superconductivity
phenomena. Recent advances in the instrumentation of physics under pressure
have enabled the observation of superconductivity in many elements not
previously known to superconduct, and at steadily increasing temperatures. This
article offers a review of the state of the art in the superconductivity of
elements, highlighting underlying correlations and general trends.Comment: Review, 10 pages, 11 figures, 97 references; to appear in Superc.
Sci. Techno
Optical Conductivity and Electronic Structure of CeRu4Sb12 under High Pressure
Optical conductivity [s(w)] of Ce-filled skutterudite CeRu4Sb12 has been
measured at high pressure to 8 GPa and at low temperature, to probe the
pressure evolution of its electronic structures. At ambient pressure, a
mid-infrared peak at 0.1 eV was formed in s(w) at low temperature, and the
spectral weight below 0.1 eV was strongly suppressed, due to a hybridization of
the f electron and conduction electron states. With increasing external
pressure, the mid-infrared peak shifts to higher energy, and the spectral
weight below the peak was further depleted. The obtained spectral data are
analyzed in comparison with band calculation result and other reported physical
properties. It is shown that the electronic structure of CeRu4Sb12 becomes
similar to that of a narrow-gap semiconductor under external pressure.Comment: 8 pages, 9 figure
- …