414 research outputs found

    Dendritic growth and structure of undercooled nickel base alloys

    Get PDF
    The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions

    Solidification mechanism of highly undercooled metal alloys

    Get PDF
    Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation

    Solidification of undercooled liquids

    Get PDF
    During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy

    The Legend of Inggu Fufuk, or the Beetle Village: A Folktale of Lole, a Language Spoken on Rote Island

    Get PDF

    Improvement of Production Rate of YBCO Coated Conductors Fabricated by TFA-MOD Method

    Get PDF
    AbstractThe metal-organic deposition (MOD) method using trifluoroacetate (TFA) salts is considered to be an effective method for inexpensively fabricating YBa2Cu3O7-y (YBCO) coated conductors with high critical current density property. The long-length TFA-MOD YBCO coated conductors have been fabricated by multi-turn reel-to-reel system. Increasing the thickness per single coating in the multi-turn reel-to-reel system is a cost-effective technique for fabrication of the precursor films in the calcination process since it reduces the number of coatings and shortens the processing time. In this work, we have developed a new starting solution consisting of non-fluorine salts of yttrium propionate and copper 2-ethylhexanoate with focusing on increasing the thickness per single coating for a high-rate fabrication of the YBCO coated conductors by the TFA-MOD method. The critical thickness per single coating of the precursor film fabricated from the new starting solution was improved to 0.44μm/coat. Furthermore, the addition of diacetoneacrylamide in the new starting solution increased the critical thickness per single coating to 0.79μm/coat. High critical current of 791 A/cm-width with high critical current density of 2.7 MA/cm2 was obtained using the new starting solution with diacetoneacrylamide at the thickness per single coating of 0.49μm/coat

    In vivo effects of interferon-Γ and anti-interferon-Γ antibody on the experimentally induced lichenoid tissue reaction

    Full text link
    We investigated the in vivo effect of recombinant interferon-Γ (IFN-Γ) and tumour necrosis factor Α (TNF-Α) treatment of mice on the development of the delayed-type hypersensitivity (DTH) reaction and lichenoid tissue reaction (LTR) following the local injection of cloned autoreactive T cells. Both the DTH reaction and the LTR were significantly enhanced by pre-treatment with IFN-Γ, but not with TNF-Ã. Induction of class II MHC antigens on keratinocytes was not essential for the enhancement by IFN-Γ. Administration of anti-IFN-Γ antibody reduced the DTH reaction and LTR, although complete inhibition was not observed with our treatment regimen. The ability of IFN-Γ to increase the number of the cloned T cells invading the epidermis in vivo , is in keeping with our previous observation that IFN-Γ treatment of cultured keratinocytes markedly increased the adherence reaction between T cells and keratinocytes in vitro.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74579/1/j.1365-2133.1988.tb03202.x.pd

    Acquisition of loss of the wild-type NRAS locus with aggressive disease progression in a patient with juvenile myelomonocytic leukemia and a heterozygous NRAS mutation

    Get PDF
    ArticleHAEMATOLOGICA-THE HEMATOLOGY JOURNAL. 92(1-11): 1576-1578 (2007)journal articl

    In-plane thermal conductivity of large single crystals of Sm-substituted (Y1x_{1-x}Smx_{x})Ba2_{2}Cu3_{3}O7δ_{7-\delta}

    Full text link
    We have investigated the in-plane thermal conductivity κab(T,H)\kappa_{ab}(T,H) of large single crystals of optimally oxygen-doped (Y1x_{1-x},Smx_{x})Ba2_{2}Cu3_{3}O7δ_{7-\delta} (xx=0, 0.1, 0.2 and 1.0) and YBa2_{2}(Cu1y_{1-y}Zny_{y})3_{3}O7δ_{7-\delta}(yy=0.0071) as functions of temperature and magnetic field (along the c axis). For comparison, the temperature dependence of κab\kappa_{ab} for as-grown crystals with the corresponding compositions are presented. The nonlinear field dependence of κab\kappa_{ab} for all crystals was observed at relatively low fields near a half of TcT_{c}. We make fits of the κ(H)\kappa(H) data to an electron contribution model, providing both the mean free path of quasiparticles 0\ell_{0} and the electronic thermal conductivity κe\kappa_{e}, in the absence of field. The local lattice distortion due to the Sm substitution for Y suppresses both the phonon and electron contributions. On the other hand, the light Zn doping into the CuO 2_{2} planes affects solely the electron component below TcT_{c}, resulting in a substantial decrease in 0\ell_{0} .Comment: 7 pages,4 figures,1 tabl

    Analytical investigation of magnetic field distributions around superconducting strips on ferromagnetic substrates

    Full text link
    The complex-field approach is developed to derive analytical expressions of the magnetic field distributions around superconducting strips on ferromagnetic substrates (SC/FM strips). We consider the ferromagnetic substrates as ideal soft magnets with an infinite magnetic permeability, neglecting the ferromagnetic hysteresis. On the basis of the critical state model for a superconducting strip, the ac susceptibility χ1+iχ1\chi_1'+i\chi_1'' of a SC/FM strip exposed to a perpendicular ac magnetic field is theoretically investigated, and the results are compared with those for superconducting strips on nonmagnetic substrates (SC/NM strips). The real part χ1\chi_1' for H0/jcds0H_0/j_cd_s\to 0 (where H0H_0 is the amplitude of the ac magnetic field, jcj_c is the critical current density, and dsd_s is the thickness of the superconducting strip) of a SC/FM strip is 3/4 of that of a SC/NM strip. The imaginary part χ1\chi_1'' (or ac loss QQ) for H0/jcds<0.14H_0/j_cd_s<0.14 of a SC/FM strip is larger than that of a SC/NM strip, even when the ferromagnetic hysteresis is neglected, and this enhancement of χ1\chi_1'' (or QQ) is due to the edge effect of the ferromagnetic substrate.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
    corecore