research

Solidification mechanism of highly undercooled metal alloys

Abstract

Experiments were conducted on metal droplet undercooling, using Sn-25wt%Pb and Ni-34wt%Sn alloys. To achieve the high degree of undercooling, emulsification treatments were employed. Results show the fraction of supersaturated primary phase is a function of the amount of undercooling, as is the fineness of the structures. The solidification behavior of the tin-lead droplets during recalescence was analyzed using three different hypotheses; (1) solid forming throughout recalescence is of the maximum thermodynamically stable composition; (2) partitionless solidification below the T sub o temperature, and solid forming thereafter is of the maximum thermodynamically stable composition; and (3) partitionless solidification below the T sub o temperature with solid forming thereafter that is of the maximum thermodynamically metastable composition that is possible. The T sub o temperature is calculated from the equal molar free energies of the liquid solid using the regular solution approximation

    Similar works