61 research outputs found

    Biochemical quality comparison of forced air dried osmo-dehydrated cashew apple products infused with spice mixture and sugar

    Get PDF
    Cashew apple is a pseudo-fruit available abundantly during harvest seasons (March to July) and majority of them goes as waste because of their perishability and poor shelf life. However, the absence of distinct exocarp and seeds are some of the potential advantages for processing utility. Hence, in the present study, osmo-dehydrated products were prepared from two maturity stages i.e. breaker and ripe stages using sugar, spice mixture and were referred to as cashew fig and chew, respectively. The drying efficiency and product recovery were conquered by cashew chew and fig, respectively. Based on the biochemical and organoleptic qualities, ripe fruits werefound suitable for preparation of chew and fig. The tannin content responsible for acridity got reduced (chew of ripe stage 1.18 to 0.53 mg/g and chew of breaker stage 1.85 to 0.68 mg/g) during the process of osmo- dehydration. Excluding total antioxidant activity, all other biochemical properties were found to be improved compared to their respective controls

    Characterization and Mapping of Halophyte Vegetation Using GIS and Remote Sensing Technique in Kachchh Plane of Gujarat, India

    Get PDF
    One of the pressures of a burgeoning population is need to increase agricultural production through both irrigated agriculture and the development of land that was previously regarded as marginal. About 8.56 m ha land in India is affected by salt. Out of this, about 1.2 m ha land is in Gujarat which is next to Uttar Pradesh (1.295 m ha). Kachchh, the second largest district of the country, has more than 53% of the total geographical area under Ranns (salt-marshy lands). The soil salinity in this region ranges from 3.2 to 32 EC and sodicity from 8.0 to 10.0 pH. The animal husbandry is the major livelihood option of the people of the Banni grassland of this region having an area of about 625 km2. Halophyte grown under the saline ecosystem is the major wild forage source for the animals feed. However, the animals feed mostly on wild forage halophytes grown under the saline ecosystem. Apart from natural salinity, a significant proportion of recently cultivated agricultural land has become saline owing to faulty irrigation practices; this secondary salinization poses direct loss to the crop production. The commercial agriculture now prevalent in the region exploits ground water heavily and encroaches upon grass lands. Heavy grazing pressure on the vegetation including wild halophytes is direct threat to the valuable natural biodiversity of the region. Very meager information on systematic characterization of vegetation in this region is available (Pandya and Sidha, 1987 and GUIDE, 1998). Halophytes have tolerance mechanisms that include ions compartmentalization, and compatible solutes. However, the mechanisms of salt tolerance in these species are not fully understood and not much work is reported in the literature. Halophytes have great potential either for direct agricultural crops uses in saline areas or for the incorporation of their characteristics into existing crop species. They may be useful for grazing or fodder or as ornamental plants and have recently been advocated as a source of oils

    CHESS-SCAPE: high resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled UKCP18 regional climate model output

    Get PDF
    In order to effectively model the potential impacts of future climate change, there is a requirement for climate data inputs which are a) high spatial and temporal resolution; b) explore a range of future climate change scenarios; c) are consistent with historical observations in the historical period; and d) provide an exploration of climate model uncertainty. This paper presents a suite of climate projections for the United Kingdom that conform to these requirements: CHESS-SCAPE. CHESS-SCAPE is a 1 km resolution dataset containing eleven near-surface meteorological variables that can be used to as input to many different impacts models. The variables are available at several time resolutions, from daily to decadal means, for the years 1980–2080. It was derived from the state-of the art regional climate projections in the United Kingdom Climate Projections 2018 (UKCP18) Regional Climate Model (RCM) UKCP18 12 km ensemble, downscaled to 1 km using a combination of physical and empirical methods to account for local topographic effects. CHESS-SCAPE has four ensemble members, which were chosen to span the range of temperature and precipitation change in the UKCP18 ensemble, representing the ensemble climate model uncertainty. CHESS-SCAPE consists of projections for four emissions scenarios, given by the Representative Concentration Pathways: RCP2.6, 4.5, 6.0 and 8.5, which were derived from the UKCP18 RCM RCP8.5 scenarios using time shifting and pattern scaling. These correspond to UK annual warming projections of between 0.9–1.9 K for RCP2.6 up to 2.8–4.3 K for RCP8.5 between 1980–2000 and 2060–2080. Little change in annual precipitation is projected, but larger changes in seasonal precipitation are seen with some scenarios projecting large increases in precipitation in the winter (up to 22 %) and large decreases in the summer (up to -39 %). All four RCP scenarios and ensemble members are also provided with bias-correction, using the CHESS-met historical gridded dataset as a baseline. With high spatial and temporal resolution, extensive range of warming scenarios and multiple ensemble members, CHESS-SCAPE provides a comprehensive data resource for modellers of climate change impacts in the UK. The CHESS-SCAPE data are available for download from the NERC EDS Centre for Environmental Data Analysis: http://dx.doi.org/10.5285/8194b416cbee482b89e0dfbe17c5786c (Robinson et al., 2022)

    Endothelial cell-specific deletion of a microRNA accelerates atherosclerosis

    Get PDF
    Background and aims: Chronic vascular endothelial inflammation predisposes to atherosclerosis; however, the cell-autonomous roles for endothelial-expressing microRNAs (miRNAs) are poorly understood in this process. MiR-181b is expressed in several cellular constituents relevant to lesion formation. The aim of this study is to examine the role of genetic deficiency of the miR-181b locus in endothelial cells during atherogenesis. Methods and Results: Using a proprotein convertase subtilisin/kexin type 9 (PCSK9)-induced atherosclerosis mouse model, we demonstrated that endothelial cell (EC)-specific deletion of miR-181a2b2 significantly promoted atherosclerotic lesion formation, cell adhesion molecule expression, and the influx of lesional macrophages in the vessel wall. Yet, endothelium deletion of miR-181a2b2 did not affect body weight, lipid metabolism, anti-inflammatory Ly6Clow or the pro-inflammatory Ly6Cinterm and Ly6Chigh fractions in circulating peripheral blood mononuclear cells (PBMCs), and pro-inflammatory or anti-inflammatory mediators in both bone marrow (BM) and PBMCs. Mechanistically, bulk RNA-seq and gene set enrichment analysis of ECs enriched from the aortic arch intima, as well as single cell RNA-seq from atherosclerotic lesions, revealed that endothelial miR-181a2b2 serves as a critical regulatory hub in controlling endothelial inflammation, cell adhesion, cell cycle, and immune response during atherosclerosis. Conclusions: Our study establishes that deficiency of a miRNA specifically in the vascular endothelium is sufficient to profoundly impact atherogenesis. Endothelial miR-181a2b2 deficiency regulates multiple key pathways related to endothelial inflammation, cell adhesion, cell cycle, and immune response involved in the development of atherosclerosis

    Barcoding of Asian seabass across its geographic range provides evidence for its bifurcation into two distinct species

    Get PDF
    Asian seabass or barramundi (Lates calcarifer) is an important food fish with commercial value and a wide geographic distribution. Though some reports based on molecular and/or morphological data exist, a comprehensive effort to establish species identity across its range is lacking. In order to address this issue and especially to ascertain whether the wide-spread distribution has resulted in bifurcation of the species, we collected Asian seabass samples from various locations representing the Western and Eastern Coastline of India, Andaman and Nicobar Islands, Bangladesh and Australia. Samples from Malaysia, Indonesia, Thailand and Singapore were collected as part of a previous study. DNA sequence variations, including cytochrome c oxidase subunit 1 (COI), 16S rDNA and the highly variable D-loop (or control region), were examined to establish species delineation. Data from all the sequences analyzed concordantly point to the existence of at least two distinct species—one representing the Indian subcontinent plus Myanmar, and a second, representing Southeast Asia (Singapore, Malaysia, Thailand and Indonesia) plus Northern Australia. These data are useful for conservation ecology, aquaculture management, for establishing the extent of genetic diversity in the Asian seabass and implementing selective breeding programs for members of this species complex

    Effect of growth regulators and micronutrients on quality parameters in cashew (Anacardium occidentale L.)

    Get PDF
    Cashew (Anacardium occidentale L.) is an important tropical nut crop of social and economic importance worldwide. However, the crop is threatened with the low yield. In the present study, an attempt was made to test the effects of plant growth hormones as well as micronutrients on nut and apple quality of cashew var. Bhaskara. Significant differences in kernel weight, shelling percentage, carbohydrates and starch content of cashew kernel and juice content of cashew apple were observed with the foliar application of growth hormones and micronutrients. The foliar application of ethrel @ 50 ppm increased shelling percentage (35.8%), carbohydrate content (21.63%), sugar content (6.26%), protein content (32.4%), starch content (31.42%), juice content (78.3%) and total soluble solids (120 Brix). Further, the foliar spray of zinc sulphate (0.5%) + borax (0.1%) increased shelling (36.13%), protein content (32.15%), starch content (32.03%) among all the treatments tested. Furthermore, higher cashew apple juice content (78%) and total soluble solids (120Brix) was also recorded with the foliar spray of zinc sulphate (0.5%) + borax (0.1%)

    De novo identification of viral pathogens from cell culture hologenomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fast, specific identification and surveillance of pathogens is the cornerstone of any outbreak response system, especially in the case of emerging infectious diseases and viral epidemics. This process is generally tedious and time-consuming thus making it ineffective in traditional settings. The added complexity in these situations is the non-availability of pure isolates of pathogens as they are present as mixed genomes or hologenomes. Next-generation sequencing approaches offer an attractive solution in this scenario as it provides adequate depth of sequencing at fast and affordable costs, apart from making it possible to decipher complex interactions between genomes at a scale that was not possible before. The widespread application of next-generation sequencing in this field has been limited by the non-availability of an efficient computational pipeline to systematically analyze data to delineate pathogen genomes from mixed population of genomes or hologenomes.</p> <p>Findings</p> <p>We applied next-generation sequencing on a sample containing mixed population of genomes from an epidemic with appropriate processing and enrichment. The data was analyzed using an extensive computational pipeline involving mapping to reference genome sets and <it>de-novo </it>assembly. In depth analysis of the data generated revealed the presence of sequences corresponding to <it>Japanese encephalitis </it>virus. The genome of the virus was also independently <it>de-novo </it>assembled. The presence of the virus was in addition, verified using standard molecular biology techniques.</p> <p>Conclusions</p> <p>Our approach can accurately identify causative pathogens from cell culture hologenome samples containing mixed population of genomes and in principle can be applied to patient hologenome samples without any background information. This methodology could be widely applied to identify and isolate pathogen genomes and understand their genomic variability during outbreaks.</p

    Deep learning enables genetic analysis of the human thoracic aorta

    Get PDF
    Genome-wide association analyses identify variants associated with thoracic aortic diameter. A polygenic score for ascending aortic diameter was associated with a diagnosis of thoracic aortic aneurysm in independent samples. Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 x 10(-20)). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore