29 research outputs found

    Synthesis of bis-oxathiaaza[3.3.3]propellanes via nucleophilic addition of (1,ω-alkanediyl)bis(N′-organylthioureas) on dicyanomethylene-1,3-indanedione

    Get PDF
    A concise and efficient route for synthesis of bis-oxathiaaza[3.3.3]propellanes by reaction of N,N,-N″-(1,ω-alkanediyl)bis-(N″-organylthioureas) with (1,3-dioxo-2,3-dihydro-1H-inden-2- ylidene)propanedinitrile is reported. The structures of the products have been confirmed by using NMR as well as single crystal X-ray analysis for one product. A plausible mechanism for formation of the products is presented.Peer reviewe

    A convenient and efficient synthesis of thiazolidin-4-ones via cyclization of substituted hydrazinecarbothioamides

    Get PDF
    2-Substituted hydrazinecarbothioamides and N ,2-disubstituted hydrazinecarbothioamides react in high yield with dimethyl acetylenedicarboxylate (DMAD) to give 4-oxo-Z-(thiazolidin-5-ylidene) acetate derivatives. Several mechanistic options involving interaction are presented. The structures of thiazolidin-4-ones have been unambiguously confirmed by single crystal X-ray crystallography. (C) 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.Peer reviewe

    Reactivity of 2-substituted hydrazinecarbothioamides towards tetracyanoethylene and convenient synthesis of (5-amino-2-diazenylthiazolylmethylene) malononitrile derivatives

    Get PDF
    2-{Amino-[5-amino-2-(substituted diazenyl) thiazol-4-yl] methylene} malononitriles were synthesized from the reaction of 2-substituted hydrazinecarbothioamides with tetracyanoethylene (TCNE) to give tetracyanoethane adduct, followed by heterocyclization afforded the target compounds. The structure of (E)-2-{amino-[5-amino-2-(phenyldiazenyl) thiazol-4-yl] methylene} malononitrile was supported by single crystal X-ray crystallography.Peer reviewe

    Functionalized 1,3-Thiazolidin-4-Ones from 2-Oxo-Acenaphthoquinylidene- and [2.2]Paracyclophanylidene-Thiosemicarbazones

    Get PDF
    The reactions of dialkyl acetylenedicarboxylates with various 2-oxo-acenaphthoquinylidene- and 4-acetyl[2.2]paracyclophanylidene-thiosemicarbazones were investigated. Using simple experimental procedures, 1,3-Thiazolidin-4-ones derived from acenaphthequinone or [2.2]paracyclophane were obtained as major products in good yields. In the case of allyl derivative of acenaphthoquinylidene-thiosemicarbazones, a complex structure of tetramethyl 5-(2-(((Z,E)-N-allyl-N′-(2-oxoacenaphthylen-1(2H)-ylidene)carbamohydrazonoyl)thio)-1,2,3-tris-(methoxycarbonyl)-cyclopropyl)-4-methoxy-7-oxabicyclo[2.2.1]hepta-2,5-diene-1,2,3,6-tetracarboxylate was formed. Single crystal X-ray analysis was used as an efficient tool to confirm the structure of the synthesized compounds as well as different spectroscopic data (1H-NMR, 13C-NMR, 2D-NMR, mass spectrometry and elemental analysis). The mechanism of the obtained products was discussed

    Reactivity of N-substituted alkenylidene hydrazinecarbothioamides toward tetracyanoethylene, an efficient synthesis stereoselective 1,3-thiazole compounds

    Get PDF
    The reaction between N-substituted alkenylidene hydrazinecarbothioamides and two molar amounts of tetracyanoethylene (TCNE) in anhydrous THF at room temperature without using any catalyst affords (Z)-4-amino-3-((Z)substituted amino)-2-(substituted imino)-2,3-dihydrothiazole-5-carbonitriles and (Z)-(4-amino-5-cyano-thiazol-2(3H)-ylidene)carbonhydrazonoyl dicyanides. Rationales for these transformations are presented. The structures of the obtained products were confirmed via single-crystal X-ray analyses. Graphic Here, we synthesize (Z)-4-amino-3-amino-2-imino-2,3-dihydrothiazole-5-carbonitriles and (Z)-(4-amino-5-cyano-thiazol-2(3H)-ylidene)carbonhydrazonoyl dicyanides from the reaction of N-substituted alkenylidene hydrazinecarbothioamides with (TCNE) in anhydrous THF at room temperature without using any catalyst. [GRAPHICS] .Peer reviewe

    Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3] propellane derivatives : Potential anticancer agents

    Get PDF
    A large number of natural products containing the propellane scaffold have been reported to exhibit cytotoxicity against several cancers; however, their mechanism of action is still unknown. Anticancer drugs targeting DNA are mainly composed of small planar molecule/s that can interact with the DNA helix, causing DNA malfunction and cell death. The aim of this study was to design and synthesize propellane derivatives that can act as DNA intercalators and/or groove binders. The unique structure of the propellane derivatives and their ability to display planar ligands with numerous possible geometries, renders them potential starting points to design new drugs targeting DNA in cancer cells. New substituted furo-imidazo[3.3.3]propellanes were synthesized via the reaction of substituted alkenylidene-hydrazinecarbothioamides with 2-(1,3-dioxo-2,3-dihydr- 1H-2-ylidene) propanedinitrile in tetrahydrofuran at room temperature. The structures of the products were confirmed by a combination of elemental analysis, NMR, ESI-MS, IR and single crystal X-ray analysis. Interestingly, 5c, 5d and 5f showed an ability to interact with Calf Thymus DNA (CT-DNA). Their DNA-binding mode was investigated using a combination of absorption spectroscopy, DNA melting, viscosity, CD spectroscopy measurements, as well as competitive binding studies with several dyes. Their cytotoxicity was evaluated against the NCI-60 panel of cancer cell lines. 5c, 5d and 5f exhibited similar anti-proliferative activity against the A549 non-small cell lung cancer (NSCLC) cell line. Further mechanistic studies revealed their ability to induce DNA damage in the A549 cell line, as well as apoptosis, evidenced by elevated Annexin V expression, enhanced caspase 3/7 activation and PARP cleavage. In this study, we present the potential for designing novel propellanes to provoke cytotoxic activity, likely through DNA binding-induced DNA damage and apoptosis.Peer reviewe

    Functionalized 1,3-Thiazolidin-4-Ones from 2-Oxo-Acenaphthoquinylidene- and [2.2]Paracyclophanylidene-Thiosemicarbazones

    Get PDF
    The reactions of dialkyl acetylenedicarboxylates with various 2-oxo-acenaphthoquinylidene- and 4-acetyl[2.2]paracyclophanylidene-thiosemicarbazones were investigated. Using simple experimental procedures, 1,3-Thiazolidin-4-ones derived from acenaphthequinone or [2.2]paracyclophane were obtained as major products in good yields. In the case of allyl derivative of acenaphthoquinylidene-thiosemicarbazones, a complex structure of tetramethyl 5-(2-(((Z,E)-N-allyl-N′-(2-oxoacenaphthylen-1(2H)-ylidene)carbamohydrazonoyl)thio)-1,2,3-tris-(methoxycarbonyl)-cyclopropyl)-4-methoxy-7-oxabicyclo[2.2.1]hepta-2,5-diene-1,2,3,6-tetracarboxylate was formed. Single crystal X-ray analysis was used as an efficient tool to confirm the structure of the synthesized compounds as well as different spectroscopic data (1H-NMR, 13C-NMR, 2D-NMR, mass spectrometry and elemental analysis). The mechanism of the obtained products was discussed

    Synthesis and Biological activity of 1,3-Thiazolylidenehydrazinylidene ethylpyridiniumbromide monohydrate, 1,3-Thiazolylidenehydraziniumbromide and 1,3-Thiazolylidenehydrazine derivatives

    Get PDF
    1,3-Thiazolylidenehydrazinylidene ethylpyridinium bromide monohydrate, 1,3-thiazolylidenehydrazinium bromide and 1,3-thiazolylidenehydrazine derivatives were synthesized by heterocyclization of 2-(1-substituted ethylidene) hydrazinecarbothioamides, characterized and screened for their anti-bacterial activities. The structures of synthesized compounds were established by spectroscopic (IR, 1H, 13C-NMR, Mass) and X-ray analyses

    Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action

    Get PDF
    Our investigation includes the synthesis of new naphthalene-bis-triazole-bis-quinolin-2(1H)-ones 4a–e and 7a–e via Cu-catalyzed [3 + 2] cycloadditions of 4-azidoquinolin-2(1H)-ones 3a–e with 1,5-/or 1,8-bis(prop-2-yn-1-yloxy)naphthalene (2) or (6). All structures of the obtained products have been confirmed with different spectroscopic analyses. Additionally, a mild and versatile method based on copper-catalyzed [3 + 2] cycloaddition (Meldal–Sharpless reaction) was developed to tether quinolinones to O-atoms of 1,5- or 1,8-dinaphthols. The triazolo linkers could be considered as anti and syn products, which are interesting precursors for functionalized epidermal growth factor receptor (EGFR) inhibitors with potential apoptotic antiproliferative action. The antiproliferative activities of the 4a–e and 7a–e were evaluated. Compounds 4a–e and 7a–e demonstrated strong antiproliferative activity against the four tested cancer cell lines, with mean GI50 ranging from 34 nM to 134 nM compared to the reference erlotinib, which had a GI50 of 33 nM. The most potent derivatives as antiproliferative agents, compounds 4a, 4b, and 7d, were investigated for their efficacy as EGFR inhibitors, with IC50 values ranging from 64 nM to 97 nM. Compounds 4a, 4b, and 7d demonstrated potent apoptotic effects via their effects on caspases 3, 8, 9, Cytochrome C, Bax, and Bcl2. Finally, docking studies show the relevance of the free amino group of the quinoline moiety for antiproliferative action via hydrogen bond formation with essential amino acids
    corecore