11 research outputs found

    Synergistic co-cultivation of activated sludge and microalgae in enhancing lipid production and N-laden wastewater treatment

    Get PDF
    The influence of inoculation ratios of activated sludge and microalgae were investigated in this study in the aspects of biomass yield, lipid yield and total nitrogen (TN) removal efficiency. It was observed that mixed culture of activated sludge/microalgae with the ratio 1:1 and 1:0.75 achieved a maximum lipid production up to 0.144 g/L and 0.133 g/L as compared with microalgae culture alone, which was only 0.081 g/L. The highest total nitrogen (TN) removal was observed with 1:1 and 1:0.75 ratios of activated sludge/microalgae cultures ranging from 96.3-96.9% removal efficiency, which was an improvement of about 90% removal efficiency compared to the activated sludge culture (6.25±0.08%). The flocculation efficiency was generally improved in mixed cultures of activated sludge andmicroalgae in comparison with only activated sludge culture and microalgae culture alone.Keywords: activated sludge; microalgae; co-cultivation; lipid; nitrogen removal

    Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst

    No full text
    Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO2 to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO2 to methanol in microactivity fixed-bed reactor at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H2 and CO2 and accelerate the CO2 conversion, resulting in higher methanol production under mild reaction conditions

    Effect of the reaction temperature and ethene/hydrogen composition on the nanostructured carbon produced by CVD using supported NiFe2O4 as a catalyst

    Get PDF
    The carbon nanostructures (CNS) were successfully grown during the chemical vapour deposition of ethene (C2H4) and hydrogen (H2) over a supported Ni0.362Fe0.64 catalyst. The temperature of the reaction was varied between 400 °C and 700 °C with different ratios of hydrogen and ethene (20/80, 50/50 and 80/20). The increase of the H2 in the reaction gas gives higher deposition yield of carbon where the maximum yield is observed at a mixture of 50/50 of H2 and C2H4 respectively. The results showed that the structures of the carbon formed by the decomposition of ethene were dependent on the reaction temperature and the gas ratio employed. Graphitic nanofibers (GNFs) and multiwall carbon nanotubes (MWCNTs) were produced when the temperature reached 700 °C, while at the lower temperature 600 °C, disordered CNS with encapsulation and some amorphous nanostructures tended to form

    Molecular Separation with Organic Solvent Nanofiltration: A Critical Review

    No full text

    Hydroformylation in petroleum chemistry and organic synthesis: Implementation of the process and solving the problem of recycling homogeneous catalysts (Review)

    No full text
    corecore