96 research outputs found

    Fuzzy clustering with volume prototypes and adaptive cluster merging

    Get PDF
    Two extensions to the objective function-based fuzzy clustering are proposed. First, the (point) prototypes are extended to hypervolumes, whose size can be fixed or can be determined automatically from the data being clustered. It is shown that clustering with hypervolume prototypes can be formulated as the minimization of an objective function. Second, a heuristic cluster merging step is introduced where the similarity among the clusters is assessed during optimization. Starting with an overestimation of the number of clusters in the data, similar clusters are merged in order to obtain a suitable partitioning. An adaptive threshold for merging is proposed. The extensions proposed are applied to Gustafson–Kessel and fuzzy c-means algorithms, and the resulting extended algorithm is given. The properties of the new algorithm are illustrated by various examples

    Extended Fuzzy Clustering Algorithms

    Get PDF
    Fuzzy clustering is a widely applied method for obtaining fuzzy models from data. Ithas been applied successfully in various fields including finance and marketing. Despitethe successful applications, there are a number of issues that must be dealt with in practicalapplications of fuzzy clustering algorithms. This technical report proposes two extensionsto the objective function based fuzzy clustering for dealing with these issues. First, the(point) prototypes are extended to hypervolumes whose size is determined automaticallyfrom the data being clustered. These prototypes are shown to be less sensitive to a biasin the distribution of the data. Second, cluster merging by assessing the similarity amongthe clusters during optimization is introduced. Starting with an over-estimated number ofclusters in the data, similar clusters are merged during clustering in order to obtain a suitablepartitioning of the data. An adaptive threshold for merging is introduced. The proposedextensions are applied to Gustafson-Kessel and fuzzy c-means algorithms, and the resultingextended algorithms are given. The properties of the new algorithms are illustrated invarious examples.fuzzy clustering;cluster merging;similarity;volume prototypes

    Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments

    Get PDF
    Advances in computational methods have led, in the world of financial services, to huge databases of client and market information. In the past decade, various computational intelligence (CI) techniques have been applied in mining this data for obtaining knowledge and in-depth information about the clients and the markets. This paper discusses the application of fuzzy clustering in target selection from large databases for direct marketing (DM) purposes. Actual data from the campaigns of a large financial services provider are used as a test case. The results obtained with the fuzzy clustering approach are compared with those resulting from the current practice of using statistical tools for target selection.fuzzy clustering;direct marketing;client segmentation;fuzzy systems

    Fuzzy Modeling of Client Preference in Data-Rich Marketing Environments

    Get PDF
    Advances in computational methods have led, in the world of financial services, to huge databases of client and market information. In the past decade, various computational intelligence (CI) techniques have been applied in mining this data for obtaining knowledge and in-depth information about the clients and the markets. This paper discusses the application of fuzzy clustering in target selection from large databases for direct marketing (DM) purposes. Actual data from the campaigns of a large financial services provider are used as a test case. The results obtained with the fuzzy clustering approach are compared with those resulting from the current practice of using statistical tools for target selection

    Extended Fuzzy Clustering Algorithms

    Get PDF
    Fuzzy clustering is a widely applied method for obtaining fuzzy models from data. It has been applied successfully in various fields including finance and marketing. Despite the successful applications, there are a number of issues that must be dealt with in practical applications of fuzzy clustering algorithms. This technical report proposes two extensions to the objective function based fuzzy clustering for dealing with these issues. First, the (point) prototypes are extended to hypervolumes whose size is determined automatically from the data being clustered. These prototypes are shown to be less sensitive to a bias in the distribution of the data. Second, cluster merging by assessing the similarity among the clusters during optimization is introduced. Starting with an over-estimated number of clusters in the data, similar clusters are merged during clustering in order to obtain a suitable partitioning of the data. An adaptive threshold for merging is introduced. The proposed extensions are applied to Gustafson-Kessel and fuzzy c-means algorithms, and the resulting extended algorithms are given. The properties of the new algorithms are illustrated in various examples

    Supervised fuzzy clustering for rule extraction

    Full text link

    Fuzzy relational classifier trained by fuzzy clustering

    Full text link

    Fuzzy clustering with volume prototypes and adaptive cluster merging

    Get PDF
    Two extensions to the objective function-based fuzzyclustering are proposed. First, the (point) prototypes are extended to hypervolumes, whose size can be fixed or can be determined automatically from the data being clustered. It is shown that clustering with hypervolume prototypes can be formulated as the minimization of an objective function. Second, a heuristic cluster merging step is introduced where the similarity among the clustersis assessed during optimization. Starting with an overestimation of the number of clusters in the data, similar clusters are merged in order to obtain a suitable partitioning. An adaptive threshold for merging is proposed. The extensions proposed are applied toGustafson–Kessel and fuzzy c-means algorithms, and the resulting extended algorithm is given. The properties of the new algorithm are illustrated by various examples

    Compact and transparent fuzzy models and classifiers through iterative complexity reduction

    Full text link

    Similarity measures in fuzzy rule base simplification

    Full text link
    • 

    corecore