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applied successfully in various fields including finance and marketing. Despite the successful
applications, there are a number of issues that must be dealt with in practical applications of
fuzzy clustering algorithms. This technical report proposes two extensions to the objective
function based fuzzy clustering for dealing with these issues. First, the (point) prototypes are
extended to hypervolumes whose size is determined automatically from the data being
clustered. These prototypes are shown to be less sensitive to a bias in the distribution of the
data. Second, cluster merging by assessing the similarity among the clusters during
optimization is introduced. Starting with an over-estimated number of clusters in the data,
similar clusters are merged during clustering in order to obtain a suitable partitioning of the data.
An adaptive threshold for merging is introduced. The proposed extensions are applied to
Gustafson–Kessel and fuzzy c-means algorithms, and the resulting extended algorithms are
given. The properties of the new algorithms are illustrated in various examples.
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Abstract

Fuzzy clustering is a widely applied method for obtaining fuzzy models from data. It

has been applied successfully in various fields including finance and marketing. Despite

the successful applications, there are a number of issues that must be dealt with in practical

applications of fuzzy clustering algorithms. This technical report proposes two extensions

to the objective function based fuzzy clustering for dealing with these issues. First, the

(point) prototypes are extended to hypervolumes whose size is determined automatically

from the data being clustered. These prototypes are shown to be less sensitive to a bias

in the distribution of the data. Second, cluster merging by assessing the similarity among

the clusters during optimization is introduced. Starting with an over-estimated number of

clusters in the data, similar clusters are merged during clustering in order to obtain a suitable

partitioning of the data. An adaptive threshold for merging is introduced. The proposed

extensions are applied to Gustafson–Kessel and fuzzy c-means algorithms, and the resulting

extended algorithms are given. The properties of the new algorithms are illustrated in

various examples.
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1 Introduction

Objective function based fuzzy clustering algorithms such as the fuzzy c-means (FCM) algo-

rithm have been used extensively for different tasks such as pattern recognition, data mining,

image processing and fuzzy modeling. Applications have been reported from different fields

such as financial engineering [19], direct marketing [17] and systems modeling [8]. Fuzzy clus-

tering algorithms partition the data set into overlapping groups such that the clusters describe

an underlying structure within the data. In order to obtain a good performance from a fuzzy

clustering algorithm, a number of issues must be considered. These concern the shape and the

volume of the clusters, the initialization of the clustering algorithm, the distribution of the data

patterns and the number of clusters in the data.

In algorithms with point prototypes, the shape of the clusters is determined by the distance

measure that is used. The FCM algorithm, for instance, uses the Euclidian distance measure

and is thus suitable for clusters with a spherical shape [3]. If a priori information is available

regarding the cluster shape, the distance metric can be modified to the cluster shape. Alterna-

tively, one can also adapt the distance metric to the data as done in the Gustafson–Kessel (GK)

clustering algorithm [5]. Another way to influence the shape of the clusters is to select proto-

types with a geometric structure. For example, fuzzy c-varieties (FCV) algorithm uses linear

subspaces of the clustering space as prototypes [1], which is useful for detecting lines and other

linear structures in the data. Since the shape of the clusters in the data is often not known,

algorithms using adaptive distance metrics are more versatile in this respect.

It is well known that the fuzzy clustering algorithms are sensitive to the initialization. Often,

the algorithms are initialized randomly multiple times, in the hope that one of the initializations

leads to good clustering results. The sensitivity to initialization becomes acute when the distri-

bution of the data patterns shows a large variance. When there are clusters with varying data

density and with different volumes, a bad initialization can easily lead to sub-optimal clustering

results. Moreover, the intuitively correct clustering results need not even correspond to a mini-

mum of the objective function under these circumstances [12]. Hence, algorithms that are less

sensitive to these variations are desired.

Perhaps the most important parameter that has to be selected in fuzzy clustering is the num-

ber of clusters in the data. Objective function based fuzzy clustering algorithms partition the

data in a specified number of clusters, no matter whether the clusters are meaningful or not.
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The validity of the clusters must be evaluated separately, after the clustering takes place. The

number of clusters should ideally correspond to the number of sub-structures naturally present

in the data. Many methods have been proposed to determine the relevant number of clusters

in a clustering problem. Typically, external cluster validity measures are used [4, 21] to as-

sess the validity of a given partition considering criteria like the compactness of the clusters

and the distance between them. Another approach to determine the number of clusters is using

cluster merging, where the clustering starts with a large number of clusters and the compatible

clusters are iteratively merged until the correct number of clusters are determined [7]. In addi-

tion to the merging, it is also possible to remove unimportant clusters in a supervised fashion

[13]. The merging approach offers a more automated and computationally less expensive way

of determining the right partition.

In this report we propose an extension of objective function based fuzzy clustering algo-

rithms with volume prototypes and similarity based cluster merging. The goal of this extension

is to reduce the sensitivity of the clustering algorithms to bias in data distribution and to deter-

mine the number of clusters automatically. Extended versions of the fuzzy c-means (E-FCM)

and the Gustafson–Kessel (E-GK) algorithms are given, and their properties are studied. Real

world applications of extended clustering algorithms are not considered in this report, but the

interested reader is referred to [18] and [17] for a successful application of the E-FCM algorithm

in direct marketing.

The outline of the report is as follows. Section 2 discusses the basics of objective function

based fuzzy clustering and the issues considered in this report. Section 3 provides the general

formulation of the extended fuzzy clustering proposed. The extended version of the Gustafson–

Kessel algorithm is described in Section 4, while the extended fuzzy c-means algorithm is

described in Section 5. It is chosen to describe the E-GK algorithm first, since it is a more

general formulation than the E-FCM algorithm. Section 6 provides examples that illustrate the

properties of the extended algorithms. Finally, conclusions are given in Section 7.

2 Background

Let fx1;x2; : : : ;xNg be a set of N data objects represented by n-dimensional feature vectors

xk = [x1k; : : : ; xnk]
T 2 R

n . A set of N feature vectors is then represented as a n � N data
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matrix

X =

2
664
x11 x12 � � � x1N

...
...

...
...

xn1 xn2 � � � xnN

3
775 : (1)

A fuzzy clustering algorithm partitions the data X into M fuzzy clusters, forming a fuzzy parti-

tion in X [1]. A fuzzy partition can be conveniently represented as a matrix U, whose elements

uik 2 [0; 1] represent the membership degree of xk in cluster i. Hence, the ith row of U contains

values of the ith membership function in the fuzzy partition.

Objective function based fuzzy clustering algorithms minimize an objective function of the

type

J(X;U;V) =

MX
i=1

NX
k=1

(uik)
m
d
2(xk;vi) (2)

where V = [v1;v2; : : : ;vM ];vi 2 R
n is a M -tuple of cluster prototypes which have to be

determined, and m 2 (1;1) is a weighting exponent which determines the fuzziness of the

clusters. In order to avoid the trivial solution, constraints must be imposed on U. Although

algorithms with different constraints have been proposed as in [11], often the following are

used:

MX
i=1

uik = 1; 8k; (3)

0 <

NX
k=1

uik < N; 8i: (4)

These constraints imply that the sum of each column of U is 1. Further, there may be no empty

clusters, but the distribution of membership among the M fuzzy subsets is not constrained.

The prototypes are typically selected to be idealized geometric forms such as linear varieties

(e.g. FCV algorithm) or points (e.g. GK or FCM algorithms). When point prototypes are used,

the general form of the distance measure is given by

d
2(xk;vi) = (xk � vi)

TAi(xk � vi); (5)

where the norm matrix Ai is a positive definite symmetric matrix. The FCM algorithm uses

the Euclidian distance measure, i.e. Ai = I 8i, while the GK algorithm uses the Mahalonibis

distance, i.e. Ai = P�1i with Pi the covariance matrix of cluster i, and the additional volume

constraint jAij = �i.
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Figure 1: Cluster centers obtained with the FCM algorithm for data with two groups. The larger

and the smaller groups have 1000 and 15 points, respectively.

The minimization of (2) subject to constraints (3) and (4) represents a nonlinear optimization

problem, which is solved iteratively by a two-step process. Apart from the numberM of clusters

used for partitioning, the optimization (2) is influenced by the distribution of the data objects

xk. Cluster centers tend to locate in regions with high concentrations of data points, and the

sparsely populated regions may be disregarded, although they may be relevant. As a result of

this behavior, the clustering algorithm may miss details as illustrated in Fig. 1. In this example,

the FCM algorithm locates the centers in the neighborhood of the larger cluster, and misses the

small, well-separated cluster.

One might argue that by carefully guiding the data collection process, one may attempt to

obtain roughly the same data density in all interesting regions. Often, however, the analyst does

not have control over the data collection process. For example, if the application area is target

selection in direct marketing, there will be many customers in the data base with modal proper-

ties, while the customers that the marketing department could be interested in will typically be

present in small numbers. In direct marketing, for instance, the percentage of customers who

respond to a personalized offer is very small compared to the percentage of customer who do

not respond. Similarly, dynamic systems may generate more data in certain regions of the state

5



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

y[k]
y[

k+
1]

Figure 2: Data collected from a dynamic system may be sparse in some regions that describe

the system function.

space than others. Consider, for example, the auto-regressive nonlinear system represented by

~yk = yk + 0:03ek

yk+1 =
sin(10~yk)

10~yk
+ 0:03ek; (6)

where ek represents normally distributed random noise. Figure 2 depicts the distribution of

1000 points in the state space with y0 = 0. Clearly, the sampling of the system function is

not uniform. The next section proposes an extension of the fuzzy clustering algorithms with

volume prototypes and cluster merging in order to deal with differences in data distribution and

to determine the number of clusters.

3 Extended fuzzy clustering

In this section the extension of fuzzy clustering algorithms with volume prototypes and similar-

ity based cluster merging is outlined. The idea of using volume prototypes in fuzzy clustering

has been introduced in [16]. Volume prototypes extend the cluster prototypes from points to

regions in the clustering space. The relation of the cluster volumes to the performance of the

clustering algorithm has been recognized for a long time. Many cluster validity measures pro-

posed are related to cluster volumes [4, 21]. Other authors have proposed adapting the volume

of clusters [10]. Recently, a fuzzy clustering algorithm based on the minimization of the to-

tal cluster volume has also been proposed [12]. This algorithm is closely related to the E-GK

algorithm presented in this report.
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The main advantage of using volume prototypes lies in the reduced sensitivity of the result-

ing clustering algorithm to the differences in cluster volumes and the distribution of the data

patterns. This renders the clustering algorithms more robust. Further, volume prototypes are

quite useful when generating fuzzy rules using fuzzy clustering, since the cores of the fuzzy

sets in the rules need not be a single point, allowing the shape of the fuzzy sets to be determined

by data rather than the properties of the selected clustering algorithm.

Similarity-driven simplification of fuzzy systems has been proposed in [14]. However, to

our knowledge, similarity measures have not been applied for cluster merging before. In the

proposed approach, cluster similarity is evaluated using a fuzzy similarity measure. Similar

clusters are merged iteratively in order to determine a relevant number of clusters. Unlike the

supervised fuzzy clustering (S-FC) approach proposed in [13], the fuzzy clustering algorithms

proposed in this report do not require an additional optimization problem to be solved during

clustering. Instead, a suitable similarity threshold must be selected for merging. It is proposed to

use an adaptive threshold, which relates the threshold to the number of clusters. By initializing

the clustering with an overestimated number of clusters there is also an increased possibility that

all the important regions in the data are discovered, and that the dependency of the clustering

result on the initialization is diminished.

3.1 Clustering with volume prototypes

Often, a number of data points close to a cluster center can be considered to belong fully to the

cluster. This is especially the case when there are some clusters that are well separated from the

others. It is then sensible to extend the core of a cluster from a single point to a region in the

space. One then obtains volume prototypes defined as follows.

Definition: A volume prototype V 2 R
n is a n-dimensional, convex and compact subspace of

the clustering space.

Note that the volume prototype can have an arbitrary shape and size according to this definition.

When the original cluster prototypes are points, it is straightforward to select the prototypes such

that they extend a given distance in all directions. In the E-FCM algorithm, the volume cluster

prototypes ~vi are then hyperspheres with center vi and radius ri. Similarly, the prototypes

become hyperellipsoids in the E-GK algorithm.
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The extended clustering algorithm measures the distance from the data points to the volume

prototypes. The data points xk that fall within the hypersphere, i.e. d(xk;vi) � ri, are elements

of the volume prototype ~vi and have by definition a membership of 1.0 in that particular cluster.

The size of the volume prototypes are thus determined by the radius ri. With knowledge of the

data, this radius can be defined by the user (fixed size prototypes), or it can be estimated from

the data. The latter approach is followed below.

A natural way to determine the radii ri; i = 1; : : : ;M is to relate them to the size of the

clusters. This can be achieved by considering the fuzzy cluster covariance matrix

Pi =

PN

k=1 u
m
ik(xk � vi)(xk � vi)

TPN
k=1 u

m
ik

: (7)

The determinant jPij of the cluster covariance matrix gives the volume of the cluster. Because

Pi is a positive definite and symmetric matrix, it can be decomposed such that Pi = Qi�iQ
T
i ,

where Qi is orthonormal and �i is diagonal with non-zero elements �i1; : : : ; �in. We let the

volume prototypes extend a distance of
p
�ij; j = 1; 2; : : : ; n along each eigenvector qij . In

the one dimensional case, this choice implies that the cluster prototype extends one standard

deviation from the cluster center. In the multi-dimensional case, the size of the radius in each

direction is determined by measuring the distances along the transformed coordinates according

to p
�iQ

T
i AiQi

p
�i; (8)

where
p
�i represents a matrix whose elements are equal to the square root of the elements of

�i.

When Ai induces a different norm than given by the covariance matrix, n different values

will be obtained for the radius. In that case, a single value can be determined by averaging,

as discussed in Section 5. The shape of the volume prototypes is the same as the shape of the

clusters induced by the distance metric. When Euclidian distance measure is used as in the

FCM algorithm, the volume prototypes are hyperspheres as shown in Fig. 3.

3.2 Distance measure

The distance measure used in the extended clustering algorithms is a modified version of the

original distance measures. First, the distance dik is measured from a data point xk to a cluster

center vi. Then, the distance ~
dik to the volume prototype ~vi is determined by accounting for the
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Figure 3: Example of two E-FCM volume cluster prototypes, ~v1 and ~v2, determined from data.

The cluster centers, v1 and v2, and the radii, r1 and r2, determine the position and the size,

respectively, of the hyperspheres.

radius ri:

~
dik = max(0; dik � ri) : (9)

Because the points xk within a distance of ri are taken to belong fully to a single cluster, the

influence of these points on the remaining clusters is removed, i.e. these points get a membership

zero in the other clusters. This decreases the tendency of dense regions to attract other cluster

centers. Figure 4 shows the centers computed by the E-FCM algorithm (Section 5) for the data

of Fig. 1. Comparing the two figures, one observes that the influence of data points from the

large group has decreased in the E-FCM algorithm, which allows the algorithm to detect the

smaller cluster. It is possible, however, that the data points “claim” a cluster center during the

two-step optimization and lead to a sub-optimal result. After all, when a number of data points

are located within a cluster center, the objective function is decreased significantly due to the

zero distance. This may prevent the separation of cluster centers, which normally happens in

fuzzy clustering. This problem is dealt within the cluster merging scheme by bounding the

total volume of the clusters, initially. The cluster radii are multiplied by a factor � (l)
=M

(l),

where M
(l) is the number of clusters in the partition at iteration l of the clustering algorithm.

The algorithm starts with �
(0) = 1. As cluster merging takes place, the size of the volume

prototypes is allowed to increase by increasing the value of � (l)
; �

(l) �M
(l), to take full benefit

of the properties of volume prototypes.
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Figure 4: Cluster centers obtained with the E-FCM algorithm for data with two groups. The

larger and the smaller groups have 1000 and 15 points, respectively.

3.3 Determining the number of clusters

The determination of the number of “natural” groups in the data is important for the success-

ful application of fuzzy clustering methods. We propose a similarity based cluster merging

approach for this purpose. The method is analogous to the similarity-driven rule base simpli-

fication proposed in [14]. The method initializes the clustering algorithm with an estimated

upper limit on the number of clusters. After evaluating the cluster similarity, similar clusters

are merged. The similarity of clusters is assessed by considering the fuzzy clusters in the data

space. If the similarity between clusters is higher than a threshold � 2 [0; 1], the clusters that

are most similar are merged at each iteration of the algorithm.

The Jaccard index used in [14] is a good measure of fuzzy set equality. In clustering, how-

ever, the goal is to obtain well separated classes in the data. For this purpose, the inclusion

measure is a better similarity index. Consider Fig. 5 showing a fuzzy set A which is to a high

degree included in a fuzzy set B. According to the Jaccard index, the two sets have a low de-

gree of equality. For clustering, however, the set A can be considered quite similar to B as it

is described to a large extent also by B. This quality is quantified by the fuzzy inclusion mea-

sure. Given two fuzzy clusters, ui(xk) and uj(xk), defined pointwise on X, the fuzzy inclusion
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Figure 5: The degree of equality between A and B is low, but the degree of inclusion of A in B

is high.

measure is defined as

Iij =

PN
k=1min(uik; ujk)PN

k=1 uik

: (10)

The inclusion measure represents the ratio of the cardinality of the intersection of the two fuzzy

sets divided by the cardinality of one of them.

The inclusion measure is asymmetric and can be used to construct a symmetric similarity

measure that assigns a similarity degree Sij 2 [0; 1], with Sij = 1 corresponding to ui(xk) fully

included in uj(xk), or vice versa, by letting

Sij = max(Iij; Iji) : (11)

The threshold � 2 [0; 1] above which merging takes place depends on the characteristics of

the data set (separation between groups, cluster density, cluster size, etc.) and the clustering pa-

rameters such as the fuzziness m. In general, the merging threshold is an additional user-defined

parameter for the extended clustering algorithm. The degree of similarity for two clusters also

depends on the other clusters in the partition. This is due to the fact that the sum of member-

ship for a data object is constrained to one. For the case where the selection of the threshold

is problematic, we propose to use an adaptive threshold depending on the number of clusters

in the partition at any time. It has been observed empirically that the adaptive threshold works

best when the expected number of clusters in the data is relatively small (less than 10).

We propose to use

�
(l) =

1

M
(l) � 1

; (12)

as the adaptive threshold. Clusters are merged when the change of maximum cluster similarity

from iteration (l � 1) to iteration (l) is below a predefined threshold �, and the the similarity

is above the threshold �. Only the most similar pair of clusters is merged, and the number of

clusters decreases at most by one at each merge. In case of ties regarding the similarity, they are

11



resolved arbitrarily. The algorithm terminates when the change in the elements of the partition

matrix is below a defined threshold � (termination criterion).

4 Extended GK algorithm

The E-GK algorithm with the adaptive threshold (12) is given in Algorithm 4.1. Gustafson and

Kessel have proposed to restrict the determinant of the norm matrix to 1, i.e. jAij = 1:0. Then

the norm matrix is given by

Ai = jPij1=nP�1: (13)

Using (8), the size of the cluster prototypes is calculated as

Ri =
p
�iQ

T
i jPij1=nQi�

�1
i QT

i Qi

p
�i = jPij1=nI: (14)

Hence, the radius for the volume prototype is determined from the cluster volume as

ri =

q
jPij1=n: (15)

Algorithm 4.1 Extended Gustafson–Kessel algorithm.

Given the data X, choose the initial number of clusters 1 < M
(0)

< N , the fuzziness parameter

m > 1 and the termination criterion � > 0. Initialize U(0) (e.g. random) and let S(0)
i�j� = 1,

�
(0) = 1.

Repeat for l = 1; 2; : : :

1. Compute pointwise cluster prototypes:

v
(l)
i =

PN
k=1(u

(l�1)

ik )mxkPN
k=1(u

(l�1)

ik )m
; 1 � i � M

(l�1)
:

2. Compute radius of cluster prototypes from fuzzy covariance:

Pi =
�N
k=1(u

(l�1)

ik )m(xk � v
(l)
i )(xk � v

(l)
i )T

�N
k=1(u

(l�1)

ik )m
; 1 � i �M

(l�1)

ri = �
(l�1)

q
jPij1=n=M (l�1)

; 1 � i �M
(l�1)

:

3. Compute the distances to the volume cluster prototypes:

dik = max

�
0;

q
(jPij1=n)(xk � v

(l)
i )TP�1i (xk � v

(l)
i )� ri

�
;

with 1 � i �M
(l�1) and 1 � k � N .
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4. Update the partition matrix:

for 1 � k � N , let �k = fijdik = 0g
if �k = ;,

u

(l)

ik =
1PM(l�1)

j=1 (dik=djk)2=(m�1)
; 1 � i �M

(l�1)
;

otherwise

u

(l)

ik =

8<
: 0 if dik > 0

1=j�kj if dik = 0
1 � i �M

(l�1)
:

5. Select the most similar cluster pair:

S

(l)
ij =

PN
k=1min(u

(l)

ik ; u
(l)

jk)PN
k=1 u

(l)

ik

; 1 � i; j �M
(l�1)

;

(i�; j�) = arg max
(i; j)

i 6= j

(S
(l)
i;j ):

6. Merge the most similar clusters:

If jS(l)
i�j� � S

(l�1)
i�j� j < �

let �(l) = 1=(M (l�1) � 1)

if S(l)
i�j� > �

(l)

u

(l)

i�k := (u
(l)

i�k + u

(l)

j�k); 1 � k � N;

remove row j
� fromU;

M
(l) = M

(l�1) � 1

else enlarge volume prototype

�
(l) = min(M (l�1)

; �
(l�1) + 1):

until kU(l) � U(l�1)k < �.

5 Extended FCM algorithm

The E-FCM algorithm with the adaptive threshold (12) is given in Algorithm 5.1. The norm

matrix for the FCM algorithm is the identity matrix. Applying (8) for the size of the cluster

prototypes one obtains

Ri =
p
�iQ

T
i IQi

p
�i = �i: (16)
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Figure 6: The cluster volume and the E-FCM radius for a two-dimensional example.

Hence, different values for the radius are obtained depending on the direction one selects. In

general, a value between the minimal and the maximal diagonal elements of �i could be used

as the radius. The selection of the mean radius thus corresponds to an averaging operation. The

generalized averaging operator

Di(s) =
1

n

(
nX

j=1

�
s
ij

)1=s

; s 2 R (17)

could be used for this purpose [6, 20]. Different averaging operators are obtained by selecting

different values of s in (17), which controls the bias of the aggregation to the size of �ij. For

s! �1, (17) reduces to the minimum operator, and hence the volume prototype becomes the

largest hypersphere that can be enclosed within the cluster volume (hyperellipsoid) as shown

in Fig. 6. For s ! 1, the maximum operator is obtained, and hence the volume prototype

becomes the smallest hypersphere that encloses the cluster volume (hyperellipsoid). It is known

that the unbiased aggregation for measurements in a metric space is obtained for s! 0 [9]. The

averaging operator (17) then reduces to the geometric mean, so that the prototype radius is given

by

ri =

vuut nY
j=1

�

1=n
ij =

q
jPij1=n: (18)
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Hence, this selection for the radius leads to a spherical prototype that preserves the volume of

the cluster.

Algorithm 5.1 Extended Fuzzy c-means algorithm.

Given the data X, choose the initial number of clusters 1 < M
(0)

< N , the fuzziness parameter

m > 1 and the termination criterion � > 0. Initialize U(0) (e.g. random) and let S(0)
i�j� = 1,

�
(0) = 1.

Repeat for l = 1; 2; : : :

1. Compute pointwise cluster prototypes:

v
(l)
i =

PN

k=1(u
(l�1)

ik )mxkPN
k=1(u

(l�1)

ik )m
; 1 � i � M

(l�1)
:

2. Compute radius of cluster prototypes from fuzzy covariance:

Pi =
�N
k=1(u

(l�1)

ik )m(xk � v
(l)
i )(xk � v

(l)
i )T

�N
k=1(u

(l�1)

ik )m
; 1 � i �M

(l�1)

ri = �
(l�1)

q
jPij1=n=M (l�1)

; 1 � i �M
(l�1)

:

3. Compute the distances to the volume cluster prototypes:

dik = max

�
0;

q
(xk � v

(l)
i )T (xk � v

(l)
i )� ri

�
; 1 � i �M

(l�1)
; 1 � k � N:

4. Update the partition matrix:

for 1 � k � N , let �k = fijdik = 0g
if �k = ;,

u

(l)

ik =
1PM(l�1)

j=1 (dik=djk)2=(m�1)
; 1 � i �M

(l�1)
;

otherwise

u

(l)

ik =

8<
: 0 if dik > 0

1=j�kj if dik = 0
1 � i �M

(l�1)
:

5. Select the most similar cluster pair:

S

(l)
ij =

PN
k=1min(u

(l)

ik ; u
(l)

jk)PN
k=1 u

(l)

ik

; 1 � i; j �M
(l�1)

;

(i�; j�) = arg max
(i; j)

i 6= j

(S
(l)
i;j ):
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6. Merge the most similar clusters:

If jS(l)
i�j� � S

(l�1)
i�j� j < �

let �(l) = 1=(M (l�1) � 1)

if S(l)
i�j� > �

(l)

u

(l)

i�k := (u
(l)

i�k + u

(l)

j�k); 1 � k � N;

remove row j
� fromU;

M
(l) = M

(l�1) � 1

else enlarge volume prototype

�
(l) = min(M (l�1)

; �
(l�1) + 1):

until kU(l) � U(l�1)k < �.

6 Examples

A real world application of the E-FCM algorithm to a data mining and modeling problem in

database marketing has been described in [17]. In this section we consider the application of

the extended clustering algorithms to artificially generated two-dimensional data. The examples

illustrate various application areas and the properties of the extended algorithms described in

Section 4 and Section 5. Unless stated otherwise, all examples have been calculated with a

fuzziness parameter m = 2 and the adaptive threshold (12). The termination criterion � is set to

0.001.

6.1 E-FCM vs cluster validity

We want to compare the performance of an extended clustering algorithm against a cluster va-

lidity approach for discovering the underlying data structure. Four groups of data are generated

randomly from normal distributions around four centers with the standard deviations given in

Table 1. Group 1 contains 150 data points and the three other groups contain 50 data points

each. The goal is to automatically detect clusters in the data that reflect the underlying data

structure. Since the clusters are roughly spherical, FCM and E-FCM algorithms are applied.
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Table 1: Data group centers (x,y), variance (�2x; �
2
y) and sample size.

Data group Number of samples

Group center Variance First case Second case

1 (�0:5;�0:4) (0:2; 0:2) 150 150

2 (0:1; 0:2) (0:1; 0:1) 50 30

3 (0:5; 0:7) (0:2; 0:1) 50 30

4 (0:6;�0:3) (0:2; 0:25) 50 50

For the cluster validity approach, the FCM algorithm is applied to the data of case 1 sev-

eral times with the number of clusters varying from two to eight. The resulting partitions are

evaluated with the Xie-Beni cluster validity index [21], which is defined as

�(U;V;X) =

PM

i=1

PN

k=1 u
m
ikkxk � vik2

N(min i;j

i6=j

fkvi � vjkg2) : (19)

The best partition is the one that minimizes the value of �(U;V;X). The results of the analysis

is shown in Fig. 7a. We observe that the Xie-Beni index detects the correct number of clusters

in this case.

When the E-FCM algorithm is applied to the data in case 1 with a random initialization using

10 clusters, it detects successfully the four groups in the data without any user intervention.

Figure 7b shows the final position of the cluster prototypes, where the volume cluster prototypes

are indicated by the circles.

In case 2, same exercise as above is repeated with the number of data in the groups two and

three reduced from 50 to 30 samples. The conventional approach, using the FCM algorithm

and the cluster validity measure, now fails to determine the correct number of structures in the

data, as shown in Fig. 8a. The E-FCM algorithm, however, is less sensitive to the distribution

of the data due to the volume cluster prototypes. The E-FCM algorithm detects also this time

automatically the four groups present in the data. The results are shown in Fig. 8b.

6.2 Influence of initialization

To study the influence of initialization on the extended clustering algorithms, the data for case 2

in Section 6.1 is clustered 1000 times both with the FCM and the E-FCM algorithms. The

partitions have been initialized randomly each time. The FCM algorithm is set to partition the
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Figure 7: (a) Using FCM and cluster validity indicates that there are four groups in the data. (b)

The E-FCM algorithm automatically detects the correct number of data structures. The data (�),
group centers (x) and E-FCM cluster centers (Æ) are shown.
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Figure 8: (a) Combination of FCM and cluster validity fails in determining the four groups in

the reduced data set. (b) The E-FCM algorithm automatically detects the correct number of data

structures in the reduced data set. The data (�), group centers (x) and E-FCM cluster centers (Æ)

are shown.
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Table 2: Mean and standard deviation of cluster centers found by the FCM and E-FCM algo-

rithms after 1000 experiments with random initialization.

FCM center E-FCM center

Group True center Mean Std. dev. Mean Std. dev.

1 (-0.5,-0.4) (-0.61,-0.44) (0.034,0.013) (-0.50,-0.39) < 10�5

2 (0.1,0.2) (-0.29,-0.26) (0.134,0.142) (0.11,0.18) < 10�5

3 (0.5,0.7) (0.39,0.56) (0.030,0.035) (0.48,0.68) < 10�5

4 (0.6,-0.3) (0.55,-0.33) (0.004,0.024) (0.57,-0.36) < 10�5

data into four clusters, while the E-FCM algorithm is started with 10 clusters initially. After

each run, the cluster centers are recorded. Table 6.2 shows the mean cluster centers and the

standard deviation of the cluster center coordinates after 1000 experiments. It is observed that

the cluster centers found by the E-FCM algorithm are closer to the true centers than the ones

found by the FCM algorithm. Moreover, the standard deviation of the centers is much lower

for the E-FCM algorithm. The FCM algorithm has especially difficulty with the small data

group 2, which seems to be missed if the initialization is not good. Therefore, the mean cluster

center is far away from any of the true cluster centers, and the standard deviation of the center

coordinates is very large. The E-FCM algorithm has proven to be much more robust to the

partition initialization. In fact, the similarity threshold � has a larger impact on the algorithm

than initialization. This is to be expected since merging too many or too few clusters would

change the remaining center coordinates significantly.

6.3 Modeling dynamic systems

The generation of fuzzy models using the GK algorithm has been described in [7, 15]. In this

example, we apply the E-GK algorithm on data generated by the dynamic system of (6). Only

the clustering step is shown, although a full modeling of the system would require a considera-

tion of rule base generation, simplification, parameter estimation and model validation. These

steps fall beyond the scope of this report.

The E-GK algorithm is applied on the data set shown in Fig. 2. The algorithm is initialized

with 10 clusters. The clustering result and the location of the volume prototypes are depicted
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Figure 9: E-GK cluster prototypes for an auto-regressive nonlinear dynamic system.

in Fig. 9. The algorithm detects five clusters and positions them to reflect the general shape of

the underlying function. A Takagi–Sugeno rule with a linear consequent could now be obtained

from each cluster. The cluster centers are positioned in regions dense with data. The sparse

regions, however, are also covered since the GK clusters extend a great deal from the cluster

prototypes. One of the clusters in a dense region is relatively small. Model validation step

would be required to assess the importance of this small cluster.

6.4 Line detection

The E-GK algorithm is capable of determining variously shaped clusters in the same data set.

Figure 10 shows the application of the E-GK algorithm to a data set with five noisy linear data

groups. The algorithm is initialized with 10 clusters. It automatically detects the five groups in

the data. Note how the volume prototypes are adjusted to the various thickness of the lines.

A similar but more difficult example is given in Fig. 11. The data set consists of samples

from four letters, each with three linear regions of different length, thickness and density. The

E-GK algorithm is used starting with 20 clusters and a fixed similarity threshold of � = 0:25.

The algorithm automatically determines the intuitively correct result.

6.5 Iris data

Over the many years concerning research on fuzzy clustering, it has become difficult to imagine

a publication on fuzzy clustering that does not refer to the iris data set [2]. We follow the same
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Figure 10: The E-GK algorithm correctly identifies the five noisy lines in the data set. The

algorithm is initialized with 10 clusters.
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Figure 11: The E-GK algorithm leads to the intuitively correct result of 12 clusters, each of

which is situated in a linear region. The algorithm is initialized to 20 clusters with � = 0:25.
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tradition. E-GK algorithm is applied to the iris data starting with 10 clusters. The algorithm

determines three groups in the data, which leads to a mis-classification of 7 patterns in the

unsupervized case.

7 Conclusions

Two extensions have been proposed to the objective function based fuzzy clustering algorithms

in order to deal with some critical issues in fuzzy clustering. The extensions consist of the use

of volume cluster prototypes and similarity-driven merging of clusters. The volume prototypes

reduce the influence of the differences in distribution and density of the data on the clustering

result, while the similarity-driven merging helps determine a suitable number of clusters, start-

ing from an overestimated number of clusters. By initializing the clustering algorithm with an

overestimated number of clusters, the possibility increases for the algorithm to detect all the

important regions of the data. This decreases the dependency of the clustering result on the

(random) initialization.

Extended versions of the fuzzy c-means and the Gustafson–Kessel clustering algorithms are

given. We have shown with examples that the proposed algorithms are capable of automatically

determining a suitable partition of the data without additional input from the user. An adaptive

similarity threshold has been proposed for this purpose.
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