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Fuzzy Clustering With Volume Prototypes and
Adaptive Cluster Merging

Uzay Kaymak and Magne Setnes

Abstract—Two extensions to the objective function-based fuzzy
clustering are proposed. First, the (point) prototypes are extended
to hypervolumes, whose size can be fixed or can be determined
automatically from the data being clustered. It is shown that
clustering with hypervolume prototypes can be formulated as the
minimization of an objective function. Second, a heuristic cluster
merging step is introduced where the similarity among the clusters
is assessed during optimization. Starting with an overestimation
of the number of clusters in the data, similar clusters are merged
in order to obtain a suitable partitioning. An adaptive threshold
for merging is proposed. The extensions proposed are applied to
Gustafson–Kessel and fuzzy c-means algorithms, and the resulting
extended algorithm is given. The properties of the new algorithm
are illustrated by various examples.

Index Terms—Cluster merging, fuzzy clustering, similarity,
volume prototypes.

I. INTRODUCTION

OBJECTIVE function-based fuzzy clustering algorithms
such as the fuzzy c-means (FCM) algorithm have been

used extensively for different tasks like pattern recognition, data
analysis, image processing and fuzzy modeling. Fuzzy clus-
tering algorithms partition the data set into overlapping groups
such that the clusters describe an underlying structure within
the data [1]. In order to obtain a good performance from a fuzzy
clustering algorithm, a number of issues must be considered.
These concern the shape and the volume of the clusters, the ini-
tialization of the clustering algorithm, the distribution of the data
patterns, and the number of clusters in the data.

In algorithms with point prototypes, the shape of the clusters
is determined by the distance measure that is used. The FCM al-
gorithm, for instance, uses the Euclidian distance measure and
is thus suitable for clusters with a spherical shape [2]. Ifa priori
information is available regarding the cluster shape, the distance
metric can be modified to the cluster shape. Alternatively, one
can also adapt the distance metric to the data as done in the
Gustafson–Kessel (GK) clustering algorithm [3]. Another way
to influence the shape of the clusters is to select prototypes with
a geometric structure. For example, fuzzy c-varieties (FCV) al-
gorithm uses linear subspaces of the clustering space as pro-
totypes [4], which is useful for detecting lines and other linear
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structures in the data. The membership of data points to a cluster
decreases with their distance to the cluster prototype. In many
applications, however, the points close to a cluster prototype can
be considered to belong fully to the fuzzy set represented by the
cluster. This suggests that the cluster prototypes should extend a
certain distance from the cluster centers, so that the data points
within these regions belong to the corresponding clusters with
membership 1.0. Current clustering algorithms do not have this
property.

It is well known that the fuzzy clustering algorithms are
sensitive to the initialization. Often, the algorithms are ini-
tialized randomly multiple times, in the hope that one of the
initializations leads to good clustering results. The sensitivity
to initialization becomes acute when the distribution of the
data patterns shows a large variance. When there are clusters
with varying data density and with different volumes, a bad
initialization can easily lead to suboptimal clustering results.
Moreover, the intuitively correct clustering results need not even
correspond to a minimum of the objective function under these
circumstances [5].

One might argue that by carefully guiding the data collection
process, one may attempt to obtain roughly the same data den-
sity in all interesting regions. Often, however, the analyst does
not have control over the data collection process. For example,
if the application area is automatic understanding of outdoor
scenes, the number of pixels corresponding to different groups
(e.g., sky, foliage, ground, etc.) differs from picture to picture
and cannot be controlled explicitly. Similarly, dynamic systems
may generate more data in certain regions of the state space than
others. Hence, a clustering algorithm that is less sensitive to dif-
ferences in initialization and the distribution of data is desired.

Perhaps the most important parameter that has to be selected
in fuzzy clustering is the number of clusters in the data. Ob-
jective function-based fuzzy clustering algorithms partition the
data into a specified number of clusters, no matter whether the
clusters are meaningful or not. The number of clusters should
ideally correspond to the number of sub-structures naturally
present in the data. Many methods have been proposed to de-
termine the relevant number of clusters in a clustering problem.
Typically external cluster validity measures are used [6], [7] to
assess the validity of a given partition by considering criteria
like the compactness of the clusters and the distance between
them. Another approach to determine the number of clusters is
using cluster merging, where the clustering starts with a large
number of clusters and the compatible clusters are iteratively
merged until the correct number of clusters are determined [8],
[9]. In addition to the merging, it is also possible to remove
unimportant clusters in a supervised fashion [10].
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In this paper, we propose an extension of objective func-
tion-based fuzzy clustering algorithms with volume prototypes
and similarity based cluster merging. The goal of this extension
is to address the issues discussed in the previous paragraphs.
Extended versions of the fuzzy c-means (E-FCM) and the
Gustafson–Kessel (E-GK) algorithms are given and their
properties are studied. Real-world applications of extended
clustering algorithms are not considered in this paper, but the
interested reader is referred to [11] for successful application
of the E-FCM algorithm in direct marketing.

The outline of the paper is as follows. Section II provides
the general formulation of the extended fuzzy clustering pro-
posed. The objective function that clustering with volume pro-
totypes minimizes is presented. The update equations for the
alternating optimization are derived, after which a heuristic sim-
ilarity based cluster merging step is introduced. The algorithm
for the extended versions of the Gustafson–Kessel clustering
and the FCM clustering is described in Section III. Section IV
provides examples that illustrate the properties of the extended
algorithm. Finally, conclusions are given in Section V.

II. EXTENDED FUZZY CLUSTERING

In this section, the extension of fuzzy clustering algo-
rithms with volume prototypes and similarity based cluster
merging is described. Let be a set of
data objects represented by-dimensional feature vectors

. A set of feature vectors
can then be represented as a data matrix . A fuzzy
clustering algorithm with point prototypes partitions the data

into fuzzy clusters, forming a fuzzy partition in based
on the distance between the data points and the cluster
prototypes , [4]. A fuzzy partition can
be conveniently represented as a matrix, whose elements

represent the membership degree ofin cluster .
The general form of the distance measure used is given by

(1)

where the norm matrix is a positive–definite symmetric ma-
trix. The FCM algorithm uses the Euclidian distance measure,
i.e., , while the GK algorithm uses the Mahalanobis
distance, i.e., with the additional volume constraint

, where is the covariance matrix of cluster.

A. Clustering With Volume Prototypes

Volume prototypes extend the cluster prototypes from points
to regions in the clustering space. Volume prototypes are quite
useful when generating fuzzy rules using fuzzy clustering, since
the cores of the fuzzy sets in the rules need not be a single point,
allowing the shape of the fuzzy sets to be determined by data
rather than the properties of the selected clustering algorithm.
The relation of the cluster volumes to the performance of the
clustering algorithm has been recognized for a long time. Many
cluster validity measures proposed are related to cluster vol-
umes [6], [7]. Other authors have proposed adapting the volume
of clusters [12]. Recently, a fuzzy clustering algorithm based
on the minimization of the total cluster volume has also been
proposed [5].

Often, a number of data points close to a cluster center can be
considered to belong fully to the cluster. This is especially the
case when there are some clusters that are well separated from
the others. It is then sensible to extend the core of a cluster from
a single point to a region in the space. One then obtainsvolume
prototypesdefined as follows.

Definition: A volume prototype is a -dimensional
convex and compact subspace of the clustering space.

Note that the volume prototype can have an arbitrary shape
and size according to this definition. When the original cluster
prototypes are points, it is straightforward to select the volume
prototypes such that they extend a given distancein all
directions from the cluster center.

The extended clustering algorithm measures the distance
from the data points to the volume prototypes. The data points

that satisfy are elements of the volume
prototype and have by definition maximal membership to
that particular cluster. The size of the volume prototypes are
thus determined by the radius. With knowledge of the data,
this radius can be defined by the user (fixed size prototypes),
or it can be estimated from the data. The latter approach is
followed.

A natural way to determine the radii, is to
relate them to the size of the clusters. This can be achieved by
considering the fuzzy cluster covariance matrix

(2)

The determinant of the cluster covariance matrix gives
the volume of the cluster. Because is a positive–defi-
nite and symmetric matrix, it can be decomposed such that

, where is orthonormal and is diag-
onal with nonzero elements . We let the volume
prototypes extend a distance of , along
each eigenvector . In the one-dimensional case, this choice
implies that the cluster prototype extends one (fuzzy) standard
deviation from the cluster center. We make this choice since
the points within one standard deviation can be considered
not to differ significantly from the cluster center. In the mul-
tidimensional case, the size of the radius in each direction is
determined by measuring the distances along the transformed
coordinates according to

(3)

where represents a matrix whose elements are equal to the
square root of the elements of .

When induces a different norm than given by the covari-
ance matrix, different values will be obtained for the radius.
In that case, a single value can be determined by averaging, as
discussed in Section III. The shape of the volume prototypes is
the same as the shape of the clusters induced by the distance
metric. When Euclidian distance measure is used as in the FCM
algorithm, the volume prototypes are hyperspheres as shown in
Fig. 1. When the Mahalanobis distance is used, the volume pro-
totypes are hyperellipsoids.
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Fig. 1. Example of two E-FCM volume cluster prototypes,~v and ~v ,
determined from data. The cluster centers,v andv and the radii,r andr ,
determine the position and the size, respectively, of the hyperspheres.

B. Update Equations

Clustering with volume prototypes minimizes the following
objective function:

(4)

where is a constant that specifies the size of the volume pro-
totype for cluster . The constant governs the fuzziness
of the clusters found by the algorithm, while is the distance
between the data point and the cluster center . The goal
of the clustering algorithm is to determine the cluster centers
and the membership values for , by
minimizing .

The minimization of (4) subject to

(5)

can be achieved by alternating optimization as in regular ob-
jective function-based fuzzy clustering algorithms. The optimal
update equations are obtained from the Lagrange method by set-
ting the partial derivative of the Lagrangian with respect to
and with respect to equal to zero. By setting equal
to zero, one obtains the update equation foras

(6)

From and by eliminating the Lagrange multipliers, the
update equation for is obtained as

(7)

Therefore, one could argue that the membership values in clus-
tering with volume prototypes are obtained from the distance of
the data points to the cluster centers modified by a weight factor
that depends on that distance. In order to prevent membership
values that are smaller than zero or larger than one, we constrain

the weight factor to be nonnegative. Then, the update equation
for the membership values becomes

(8)

where the weighting factors are given by

(9)

Note that the term can also be written as a modified
(squared) distance .

When (4) is minimized by iterating between (6) and (8), the
volume prototypes extend a distancefrom the cluster centers
and the points within the volume prototypes are assigned a
membership of one in the corresponding cluster and a member-
ship of zero in the remaining clusters. It is possible that the data
points “claim” a cluster center during the two-step optimization
and lead to a suboptimal result. After all, when a number of data
points are located within a cluster center, the objective function
is decreased significantly due to the zero distance. This may pre-
vent the separation of cluster centers, which normally happens
in fuzzy clustering. Noting that the derivative of the Lagrangian
with respect to is negative for , this problem can be
dealt with by setting the radii to small values initially and then
gradually increasing their values to the full values specified by
the user. In our method, the cluster radii are multiplied by a
factor , where is the number of clusters in the
partition at iteration of the clustering algorithm. The algorithm
starts with . As cluster merging takes place, the size of
the volume prototypes is allowed to increase by increasing the
value of .

C. Determining the Number of Clusters

The determination of the number of “natural” groups in the
data is important for the successful application of fuzzy clus-
tering methods. We propose a similarity-based cluster merging
approach for this purpose (similar approaches can be found in
[13] and [14]). The method initializes the clustering algorithm
with an estimated upper limit on the number of clusters. After
evaluating the cluster similarity, similar clusters are merged if
the similarity between clusters is higher than a threshold

. Unlike the supervised fuzzy clustering (S-FC) approach
proposed in [10], similarity-driven cluster merging does not re-
quire an additional optimization problem to be solved during
clustering. Instead, a suitable similarity threshold must be se-
lected for merging.

The goal in clustering is to obtain well-separated clusters. In-
clusion measure between two fuzzy sets is an appropriate mea-
sure for assessing the similarity of fuzzy clusters. Given two
fuzzy clusters and , defined pointwise on , the
fuzzy inclusion similarity measure between two fuzzy clusters
is defined as [15], [16]

(10)
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This measure takes into account the contribution to similarity
from all data points, both from those within the volume proto-
types and those outside.

The threshold above which merging takes place
depends on the characteristics of the data set (separation
between groups, cluster density, cluster size, etc.) and the
clustering parameters such as the fuzziness. In general, the
merging threshold is an additional user-defined parameter for
the extended clustering algorithm. The degree of similarity for
two clusters also depends on the other clusters in the partition.
This is due to the fact that the sum of membership for a data
object is constrained to one. For the case where the selection
of the threshold is problematic, we propose to use an adaptive
threshold depending on the number of clusters in the partition
at any time. It has been observed empirically that the adaptive
threshold works best when the expected number of clusters in
the data is relatively small (less than ten).

We propose to use

(11)

as the adaptive threshold. Clusters are merged when the change
of maximum cluster similarity from iteration ( ) to itera-
tion ( ) is below a predefined threshold and the similarity is
above the threshold. Only the most similar pair of clusters is
merged and the number of clusters decreases at most one at each
merger. In case of ties regarding the similarity, they are resolved
arbitrarily. The algorithm terminates when the change in the el-
ements of the partition matrix is below a defined threshold
(termination criterion).

III. EXTENDED GK AND FCM ALGORITHMS

In this section, we give an algorithm for the extended fuzzy
c-means (E-FCM) and the extended GK (E-GK) clustering.
First, we derive an expression for the radii of the volume
prototypes. Second, the algorithm with the adaptive similarity
threshold (11) is given in Section III-A. The E-GK and the
E-FCM algorithms differ only in step 3 of Section III-A.

Gustafson-Kessel have proposed to restrict the determinant
of the norm matrix to 1, i.e., . Then the norm matrix
is given by

(12)

Using (3), the size of the cluster prototypes is calculated as

(13)

Hence, the radius for the volume prototype is determined from
the cluster volume as

(14)

In case of the FCM algorithm, the norm matrix is the identity
matrix. Applying (3) for the size of the cluster prototypes one
obtains

(15)

Hence, different values for the radius are obtained depending
on the direction one selects. In general, a value between the

Fig. 2. The cluster volume and the E-FCM radius for a two-dimensional
example.

minimal and the maximal diagonal elements ofcould be used
as the radius. The selection of the mean radius thus corresponds
to an averaging operation. The generalized averaging operator

(16)

could be used for this purpose [17]. Different averaging oper-
ators are obtained by selecting different values ofin (16),
which controls the bias of the aggregation to the size of.
For , (16) reduces to the minimum operator and,
hence, the volume prototype becomes the largest hypersphere
that can be enclosed within the cluster volume (hyperellipsoid)
as shown in Fig. 2. For , the maximum operator is ob-
tained and, hence, the volume prototype becomes the smallest
hypersphere that encloses the cluster volume (hyperellipsoid).
It is known that the unbiased aggregation for measurements in a
metric space is obtained for [18]. The averaging operator
(16) then reduces to the geometric mean, so that the prototype
radius is given by

(17)

Hence, this selection for the radius leads to a spherical prototype
that preserves the volume of the cluster.

Extended Clustering Algorithm:Given the data , choose
the initial number of clusters , the fuzziness pa-
rameter and the termination criteria . Initialize

(e.g., random) and let , .

Repeat for , 2,…
1. Compute pointwise cluster prototypes
(6) :
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2. Compute radius of cluster prototypes
from fuzzy covariance:

3. Compute the squared distances to the
volume cluster prototypes.
For extended GK clustering,

For extended fuzzy c-means clustering,

4. Update the partition matrix (8) :
for , let

if ,

otherwise

if
if

5. Select the most similar cluster pair:

6. Merge the most similar clusters:
If

let
if

remove row from

else enlarge volume prototype

until .

TABLE I
DATA GROUPCENTERS(x; y), VARIANCE (� ; � ) AND SAMPLE SIZE

IV. EXAMPLES

A real-world application of the E-FCM algorithm to a data
mining and modeling problem in database marketing has been
described in [11]. In this section, we consider the application of
the extended clustering algorithms to artificially generated two-
dimensional data and a multidimensional data set from the UCI
Machine Learning Repository [19]. The examples illustrate the
properties of the extended algorithms described in Section III.
All examples have been calculated with a fuzziness parameter

and the adaptive threshold (11). The criterionis set to
0.01 and the termination criterion is set to 0.001.

A. E-FCM Versus Cluster Validity

We want to compare the performance of an extended clus-
tering algorithm against a cluster validity approach for discov-
ering the underlying data structure. Four groups of data are gen-
erated randomly from normal distributions around four centers
with the standard deviations given in Table I. The number of
sample points in each group is also indicated. The goal is to au-
tomatically detect clusters in the data that reflect the underlying
data structure. Since the clusters are roughly spherical, FCM,
and E-FCM algorithms are applied.

For the cluster validity approach, the FCM algorithm is
applied to the data several times with the number of clusters
varying from two to eight. The resulting partitions are evaluated
with the Xie–Beni cluster validity index [7], which is one of
the popular cluster validity indices from the literature. The
conventional approach, using the FCM algorithm and the
cluster validity measure, fails to determine the correct number
of structures in the data due to the uneven distribution of
data [see Fig. 3(a)]. The E-FCM algorithm, however, is able
to detect the four groups present in the data. The results are
shown in Fig. 3(b). The E-FCM algorithm is thus more robust
to uneven data distribution than the original FCM algorithm.
However, the E-FCM algorithm can also lead to wrong results
if the differences in cluster density become too large, as shown
in Fig. 4, where cluster 1 has now 300 points.

B. Influence of Initialization

To study the influence of initialization on the extended
clustering algorithms, the data in Section IV-A is clustered
1000 times both with the FCM and the E-FCM algorithms. The
partitions have been initialized randomly each time. The FCM
algorithm is set to partition the data into four clusters, while
the E-FCM algorithm is started with ten clusters initially. After
each run, the cluster centers are recorded. Table II shows the
mean cluster centers and the standard deviation of the cluster
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(a)

(b)

Fig. 3. (a) Combination of FCM and cluster validity fails in determining the
four groups in the data set. (b) The E-FCM algorithm automatically detects the
correct number of data structures in the data set. The data (�), group centers (x)
and E-FCM cluster centers (�) are shown.

center coordinates after 1000 experiments. It is observed that
the cluster centers found by the E-FCM algorithm are closer
to the true centers than the ones found by the FCM algorithm.
Moreover, the standard deviation of the centers is much lower
for the E-FCM algorithm. The FCM algorithm especially has
difficulty with the small data group 2, which seems to be missed
if the initialization is not good. Therefore, the mean cluster
center is far away from any of the true cluster centers and the
standard deviation of the center coordinates is very large. The
E-FCM algorithm has proven to be much more robust to the
partition initialization. In fact, the similarity threshold has
a larger impact on the algorithm than initialization. This is to
be expected since merging too many or too few clusters would
change the remaining center coordinates significantly.

C. Computational Load

When using volume prototypes, the computational load of
the E-FCM algorithm without cluster merging is larger than the
computational load of the FCM algorithm. This is partly caused
by the slower convergence due to the cluster radii that are en-
larged gradually during the optimization. Similarly, the com-
putational load of the E-GK algorithm without cluster merging

Fig. 4. An example where E-FCM algorithm converges to a nonintuitive
solution because of very large differences in the cluster densities.

TABLE II
MEAN AND STANDARD DEVIATION OF CLUSTER CENTERS

FOUND BY THE FCM AND E-FCM ALGORITHMS AFTER

1000 EXPERIMENTSWITH RANDOM INITIALIZATION

is larger than the computational load of the GK algorithm. In
general, the computational complexity of the GK algorithms
is larger than the computational complexity of the FCM algo-
rithms due to the additional calculations of cluster covariance
and the inversion of the covariance matrix for use in the dis-
tance metric. When (17) is used to compute the cluster radii
in E-FCM, however, the cluster covariance matrix must also
be computed, which increases the computational load of the
E-FCM algorithm compared to the original FCM algorithm even
further. Naturally, the computational cost of the extended algo-
rithms increases further when cluster merging is used. In this
case, the clustering is made multiple times for different number
of clusters and hence the total clustering time depends on the
initial number of clusters .

In order to compare the computational load of various algo-
rithms, we have run different algorithms 100 times with the data
set from Section IV-B. Each time, the cluster algorithms are ini-
tialized randomly. When cluster merging is applied, the algo-
rithms are started with ten initial clusters. Table III summarizes
the results obtained on a 650-MHz Pentium III machine with
256-MB memory running Matlab. As Table III shows, the ex-
tended algorithms are three to four times slower than the corre-
sponding original clustering algorithms.

D. Line Detection

The E-GK algorithm is capable of determining differently
shaped clusters in the same data set. Fig. 5 shows the application
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TABLE III
COMPUTATIONAL LOAD AVERAGED OVER 100 DIFFERENTINITIALIZATIONS

Fig. 5. The E-GK algorithm correctly identifies the five noisy lines in the data
set. The algorithm is initialized with ten clusters.

TABLE IV
CONFUSIONMATRIX FOR E-FCM CLASSIFYING THE WINE DATA

of the E-GK algorithm to a data set with five noisy linear data
groups. The algorithm is initialized with ten clusters. It automat-
ically detects the five groups in the data. Note how the volume
prototypes are adjusted to the various thickness of the lines.

E. Wine Data

To illustrate the performance of the extended fuzzy c-means
algorithm in a higher dimensional problem, we have applied it
on the wine database from the UCI Machine Learning Repos-
itory [19]. In this data set, three classes of wine are described
by 13 different features regarding the chemical composition of
the wine. All features are continuous valued. The E-FCM algo-
rithm is applied starting with ten clusters. The merge threshold

is 0.70, which leads to three clusters that we expect to find
in this data set. Unsupervised classification based on the clus-
tering results of E-FCM leads to an overall accuracy of 97%. The
confusion matrix corresponding to this classification is given in
Table IV.

V. CONCLUSION

Two extensions have been proposed to the objective function-
based fuzzy clustering algorithms in order to deal with some
critical issues in fuzzy clustering. The extensions consist of the
use of volume cluster prototypes and similarity-driven merging
of clusters. The volume prototypes imply that the data points
close to a cluster center are assumed to belong fully to that
cluster. Similarity-driven merging helps determine a suitable
number of clusters starting from an overestimated number of
clusters. By initializing the clustering algorithm with an over-
estimated number of clusters, the possibility increases for the
algorithm to detect all the important regions of the data. This de-
creases the dependency of the clustering result on the (random)
initialization.

Extended version of the fuzzy c-means and the GK clus-
tering algorithms is given. It is shown that clustering with
volume prototypes can be formulated as the minimization of
an objective function. The cluster merging step is motivated
heuristically. Merging results depend on the selection of a
similarity threshold, which is a disadvantage of the proposed
method. However, an adaptive similarity threshold is proposed
that alleviates this problem partially for some data sets. In
several examples, we have also shown that the proposed
algorithms are capable of determining a suitable partition of
the data.
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[9] U. Kaymak and R. Babǔska, “Compatible cluster merging for fuzzy
modeling,” inProc. Fourth IEEE Int. Conf. Fuzzy Systems, vol. 2, Yoko-
hama, Japan, Mar. 1995, pp. 897–904.

[10] M. Setnes, “Supervised fuzzy clustering for rule extraction,” inProc.
FUZZ-IEEE’99, Seoul, Korea, Aug. 1999, pp. 1270–1274.

[11] M. Setnes and U. Kaymak, “Fuzzy modeling of client preference from
large data sets: An application to target selection in direct marketing,”
IEEE Trans. Fuzzy Syst., vol. 9, pp. 153–163, Feb. 2001.

[12] A. Keller and F. Klawonn, “Clustering with volume adaptation for rule
learning,” in Proc. Seventh Euro. Congr. Intelligent Techniques Soft
Computing (EUFIT’99), Aachen, Germany, Sept. 1999.

[13] H. Frigui and R. Krishnapuram, “A robust algorithm for automatic ex-
traction of an unknown number of clusters from noisy data,”Patt. Recog.
Lett., vol. 17, pp. 1223–1232, 1996.



712 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 6, DECEMBER 2002

[14] E. Backer and A. K. Jain, “A clustering performance measure based on
fuzzy set decomposition,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-3, pp. 66–75, Jan. 1981.

[15] D. Dubois and H. Prade, “A unifying view of comparison indices in a
fuzzy set-theoretic framework,” inFuzzy Sets and Possibility Theory:
Recent Developments, R. R. Yager, Ed. New York: Pergamon, 1982,
pp. 3–13.

[16] B. Kosko,Neural Networks and Fuzzy Systems. Upper Saddle River,
NJ: Prentice-Hall, 1992.

[17] G. H. Hardy, J. E. Littlewood, and G. Polya,Inequalities, 2nd
ed. Cambridge, U.K.: Cambridge Univ. Press, 1973.

[18] U. Kaymak and H. R. van Nauta Lemke, “A sensitivity analysis approach
to introducing weight factors into decision functions in fuzzy multicri-
teria decision making,”Fuzzy Sets Syst., vol. 97, no. 2, pp. 169–182, July
1998.

[19] C. L. Blake and C. J. Merz,UCI Repository of Machine Learning
Databases, 1998.

Uzay Kaymak received the M.Sc. degree in elec-
trical engineering, the Degree of Chartered Designer
in Information Technology, and the Ph.D. degree,
all from Delft University of Technology, Delft, The
Netherlands, in 1992, 1995, and 1998, respectively.

He worked between 1997–2000 as a Reservoir
Engineer at Shell International Exploration and
Production, The Netherlands. Currently, he is an As-
sistant Professor at Erasmus University Rotterdam,
Rotterdam, The Netherlands. His research interests
include fuzzy decision making, data mining for

marketing and finance, and intelligent agents for financial modeling.
Dr. Kaymak is a Member of the Dutch School for Information and Knowl-

edge Systems (SIKS) and of the Erasmus Research Institute for Management
(ERIM).

Magne Setneswas born in 1970, in Bergen, Norway.
He received the B.Sc. degree in robotics from the
Kongsberg College of Engineering, Norway, the
M.Sc. degree in electrical engineering from the Delft
University of Technology, Delft, The Netherlands,
in 1992 and 1995, respectively. He also received
the Degree of Chartered Designer in Information
Technology and the Ph.D. degree from the Control
Laboratory, both from Delft University, in 1997 and
2001, respectively.

Currently, he is with Heineken Technical Services,
Department of Research & Development, The Netherlands. His interests include
fuzzy systems and computational intelligence techniques for modeling, control,
and decision making.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


