52 research outputs found

    Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2022

    Get PDF
    The current drought conditions across the Parana-La Plata Basin (LPB) in Brazil-Argentina have been the worst since 1944. While this area is characterized by a rainy season with a peak from October to April, the hydrological year 2020-2021 was very deficient in rainfall, and the situation extended into the 2021-2022 hydrological year. Below-normal rainfall was dominant in south-eastern Brazil, northern Argentina, Paraguay, and Uruguay, suggesting a late onset and weaker South American Monsoon and the continuation of drier conditions since 2021. In fact, in 2021 Brazilian south and south-east regions faced their worst droughts in nine decades, raising the spectre of possible power rationing given the grid dependence on hydroelectric plants. The Paraná-La Plata Basin drought induced damages to agriculture and reduced crop production, including soybeans and maize, with effects on global crop markets. The drought situation continued in 2022 in the Pantanal region. Dry meteorological conditions are still present in the region at the end of September 2022 with below-average precipitation anomalies. Soil moisture anomaly and vegetation conditions are worst in the lower part of the La Plata Basin, in the southern regions. Conversely, upper and central part of the basin show partial and temporary recovery

    Domain choice in an experimental nested modeling prediction system for South America

    Get PDF
    The purposes of this paper are to evaluate the new version of the regional model, RegCM3, over South America for two test seasons, and to select a domain for use in an experimental nested prediction system, which incorporates RegCM3 and the European Community-Hamburg (ECHAM) general circulation model (GCM). To evaluate RegCM3, control experiments were completed with RegCM3 driven by both the NCEP/NCAR Reanalysis (NNRP) and ECHAM, using a small control domain (D-CTRL) and integration periods of January–March 1983 (El Niño) and January–March 1985 (La Niña). The new version of the regional model captures the primary circulation and rainfall differences between the two years over tropical and subtropical South America. Both the NNRP-driven and ECHAM-driven RegCM3 improve the simulation of the Atlantic intertropical convergence zone (ITCZ) compared to the GCM. However, there are some simulation errors. Irrespective of the driving fields, weak northeasterlies associated with reduced precipitation are observed over the Amazon. The simulation of the South Atlantic convergence zone is poor due to errors in the boundary condition forcing which appear to be amplified by the regional model. To select a domain for use in an experimental prediction system, sensitivity tests were performed for three domains, each of which includes important regional features and processes of the climate system. The domain sensitivity experiments were designed to determine how domain size and the location of the GCM boundary forcing affect the regional circulation, moisture transport, and rainfall in two years with different large scale conditions. First, the control domain was extended southward to include the exit region of the Andes low level jet (D-LLJ), then eastward to include the South Atlantic subtropical high (D-ATL), and finally westward to include the subsidence region of the South Pacific subtropical high and to permit the regional model more freedom to respond to the increased resolution of the Andes Mountains (D-PAC). In order to quantify differences between the domain experiments, measures of bias, root mean square error, and the spatial correlation pattern were calculated between the model results and the observed data for the seasonal average fields. The results show the GCM driving fields have remarkable control over the RegCM3 simulations. Although no single domain clearly outperforms the others in both seasons, the control domain, D-CTRL, compares most favorably with observations. Over the ITCZ region, the simulations were improved by including a large portion of the South Atlantic subtropical high (D-ATL). The methodology presented here provides a quantitative basis for evaluating domain choice in future studies

    Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro

    Get PDF
    On 15 February 2022, the city of Petrópolis in the highlands of the state of Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm), generated by a strongly invigorated mesoscale convective system. It resulted in flash floods and subsequent landslides that caused the deadliest landslide disaster recorded in Petrópolis, with 231 fatalities. In this paper, we analyzed the root causes and the key triggering factors of this landslide disaster by assessing the spatial relationship of landslide occurrence with various environmental factors. Rainfall data were retrieved from 1977 to 2022 (a combination of ground weather stations and the Climate Hazards Group InfraRed Precipitation – CHIRPS). Remotely sensed data were used to map the landslide scars, soil moisture, terrain attributes, line-of-sight displacement (land surface deformation), and urban sprawling (1985–2020). The results showed that the average monthly rainfall for February 2022 was 200 mm, the heaviest recorded in Petrópolis since 1932. Heavy rainfall was also recorded mostly in regions where the landslide occurred, according to analyses of the rainfall spatial distribution. As for terrain, 23 % of slopes between 45–60∘ had landslide occurrences and east-facing slopes appeared to be the most conducive for landslides as they recorded landslide occurrences of about 9 % to 11 %. Regarding the soil moisture, higher variability was found in the lower altitude (842 m) where the residential area is concentrated. Based on our land deformation assessment, the area is geologically stable, and the landslide occurred only in the thin layer at the surface. Out of the 1700 buildings found in the region of interest, 1021 are on the slope between 20 to 45∘ and about 60 houses were directly affected by the landslides. As such, we conclude that the heavy rainfall was not the only cause responsible for the catastrophic event of 15 February 2022; a combination of unplanned urban growth on slopes between 45–60∘, removal of vegetation, and the absence of inspection were also expressive driving forces of this disaster.</p

    Baixa do Noroeste Argentino e Baixa do Chaco: caracterísitcas, diferenças e semelhanças The Northewestern Argentinean Low and The Chaco Low: their characteristics, differences and similarities

    Get PDF
    A Baixa do Chaco e a Baixa do Noroeste Argentino são frequentemente confundidas ou tratadas como um único sistema. Isso se deve a vários fatores: o pouco conhecimento que se tem sobre elas, especialmente sobre a Baixa do Chaco, a baixa resolução das reanálises globais que as mostram como um único sistema e a relativamente escassa cobertura de dados sobre a região que ocupam. Este trabalho tenta contribuir para o melhor entendimento das diferenças e semelhanças entre ambos os sistemas, analisando algumas características dinâmicas e termodinâmicas da região em que elas atuam, com a finalidade de aprofundar seu conhecimento e de possibilitar a sua melhor identificação e diferenciação. O estudo utiliza as reanálises do modelo regional Eta/CPTEC do período (2000-2004) e considera os meses de verão, período no qual as duas baixas estão ativas. Os resultados mostraram que a Baixa do Noroeste Argentino está mais relacionada com a atividade transiente, o que pode ser comprovado através da influência do jato subtropical e da variabilidade temporal de algumas variáveis, como a pressão e a temperatura potencial equivalente. A Baixa do Chaco se desenvolve numa atmosfera mais instável do ponto de vista termodinâmico, porém menos afetada pela dinâmica das latitudes médias.<br>The Chaco Low and the Northwestern Argentinean Low are frequently confounded or treated as a single system, due to our limited knowledge about them (especially concerning the Chaco Low), the low resolution of global analyses -that show them as a single low pressure system-, and the relatively poor data coverage over the region where they are usually located. This article aims to contribute to a better understanding of the differences and similarities between them, as well as to analyze the atmospheric dynamical and thermo-dynamical conditions where they evolve. It is considered that this study will aid to a better recognition of both systems. With this purpose, regional reanalyses from the Eta/CPTEC model for the 2000-2004 period has been used. The article focuses in summer months, since both low-pressure systems are more active during this season. Results show that the Northwestern Argentinean Low is more related to transient activity, as can be deducted from the subtropical jet influence on this system and also from the temporal variability of some key variables -such as the sea level pressure and the equivalent potential temperature-. From a thermo-dynamic point of view, the Chaco Low develops in a more unstable environment and is less influenced by middle latitude dynamics

    Características das Frentes Frias Causadoras de Chuvas Intensas no Leste de Santa Catarina

    No full text
    Resumo O presente trabalho analisa as características principais das frentes frias causadoras de chuvas intensas no litoral do Estado de Santa Catarina, com a finalidade de melhorar o conhecimento e a previsão desse tipo de situação. Para isso, foi feita uma climatologia sinótica das frentes frias, utilizando reanálises CFSR do NCEP e dados de precipitação do CPTEC/INPE no período 1998-2010, a partir dos quais foram separados 5% das frentes frias mais chuvosas da série. Os resultados mostram que as frentes frias que provocam chuvas mais volumosas ocorrem ao longo de todo o ano, associadas à penetração de cavados frios, intensos e pouco baroclínicos nos níveis médios e altos da atmosfera. A lenta evolução da situação meteorológica permite a intensificação de um cavado na baixa troposfera, que provoca a gradativa intensificação da instabilidade termodinâmica sobre o leste de Santa Catarina, através da advecção de calor e umidade desde a Amazônia. A frente fria que dispara a precipitação apresenta forte inclinação nos baixos níveis e lento deslocamento. Em geral, a situação meteorológica apresenta poucas variações sazonais e pode ser identificada, em média, com pelo menos 48 h de antecedência

    CARACTERÍSTICAS DAS FRENTES FRIAS COM POTENCIAL PARA PROVOCAR CHUVAS INTENSAS NA REGIÃO SERRANA DE RIO DE JANEIRO (CHARACTERISTIS OF COLD FRONTS WITH POTENTIAL TO CAUSE HEAVY RAINFALL OVER THE MONTAINOUS REGION OF RIO DE JANEIRO)

    No full text
    A Região Serrana do Estado de Rio de janeiro é uma das mais expostas aos desastres naturais devido à sua orografia, climatologia e ocupação demográfica desordenada. Boa parte da precipitação anual nessa região é explicada pela atuação de sistemas frontais. Neste trabalho se realiza uma caracterização das frentes frias responsáveis pelos maiores volumes pluviométricos diários. As situações foram escolhidas utilizando critérios objetivos aplicados às análises do CFSR para o período 1998-2010. Os dados de precipitação utilizados incluem dados de pluviômetros locais e estimativas por sensores remotos. As frentes causadoras dos maiores acumulados diários ocorrem durante o semestre quente do ano. Nesse período elas se diferenciam dos sistemas que causam chuvas inferiores a 5.0 mm/dia já com dois dias de antecedência, quando a frente fria se encontra sobre o Uruguai. Inicialmente, a presença de uma onda relativamente barotrópica sobre o Oceano Atlântico prolonga a advecção de ar quente e úmido desde o Noroeste sobre o centro-sul do país. O posterior acoplamento dessa perturbação com uma onda mais curta e baroclínica determina o avanço mais rápido da frente fria, assim como sua intensificação em termos de contraste de temperatura, advecção de vorticidade e divergência em altura. Esses fatores, somados à maior umidade e temperatura da massa de ar precedente, explicam a ocorrência de chuvas mais volumosas
    corecore