4,168 research outputs found

    Deriving Grover's lower bound from simple physical principles

    Get PDF
    Grover's algorithm constitutes the optimal quantum solution to the search problem and provides a quadratic speed-up over all possible classical search algorithms. Quantum interference between computational paths has been posited as a key resource behind this computational speed-up. However there is a limit to this interference, at most pairs of paths can ever interact in a fundamental way. Could more interference imply more computational power? Sorkin has defined a hierarchy of possible interference behaviours---currently under experimental investigation---where classical theory is at the first level of the hierarchy and quantum theory belongs to the second. Informally, the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. In this work, we consider how Grover's speed-up depends on the order of interference in a theory. Surprisingly, we show that the quadratic lower bound holds regardless of the order of interference. Thus, at least from the point of view of the search problem, post-quantum interference does not imply a computational speed-up over quantum theory.Comment: Updated title and exposition in response to referee comments. 6+2 pages, 5 figure

    Higher-order interference in extensions of quantum theory

    Get PDF
    Quantum interference lies at the heart of several quantum computational speed-ups and provides a striking example of a phenomenon with no classical counterpart. An intriguing feature of quantum interference arises in a three slit experiment. In this set-up, the interference pattern can be written in terms of the two and one slit patterns obtained by blocking some of the slits. This is in stark contrast with the standard two slit experiment, where the interference pattern is irreducible. This was first noted by Rafael Sorkin, who asked why quantum theory only exhibits irreducible interference in the two slit experiment. One approach to this problem is to compare the predictions of quantum theory to those of operationally-defined `foil' theories, in the hope of determining whether theories exhibiting higher-order interference suffer from pathological--or at least undesirable--features. In this paper two proposed extensions of quantum theory are considered: the theory of Density Cubes proposed by Dakic et al., which has been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum Theory of Zyczkowski. The theory of Density Cubes will be shown to provide an advantage over quantum theory in a certain computational task and to posses a well-defined mechanism which leads to the emergence of quantum theory. Despite this, the axioms used to define Density Cubes will be shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum Theory is well-defined and we show that it exhibits irreducible interference to all orders. This feature of the theory is argued not to be a genuine phenomenon, but to arise from an ambiguity in the current definition of higher-order interference. To understand why quantum theory has limited interference therefore, a new operational definition of higher-order interference is needed.Comment: Updated in response to referee comments. 17 pages. Comments welcom

    Oracles and query lower bounds in generalised probabilistic theories

    Get PDF
    We investigate the connection between interference and computational power within the operationally defined framework of generalised probabilistic theories. To compare the computational abilities of different theories within this framework we show that any theory satisfying three natural physical principles possess a well-defined oracle model. Indeed, we prove a subroutine theorem for oracles in such theories which is a necessary condition for the oracle to be well-defined. The three principles are: causality (roughly, no signalling from the future), purification (each mixed state arises as the marginal of a pure state of a larger system), and strong symmetry existence of non-trivial reversible transformations). Sorkin has defined a hierarchy of conceivable interference behaviours, where the order in the hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit experiment. Given our oracle model, we show that if a classical computer requires at least n queries to solve a learning problem, then the corresponding lower bound in theories lying at the kth level of Sorkin's hierarchy is n/k. Hence, lower bounds on the number of queries to a quantum oracle needed to solve certain problems are not optimal in the space of all generalised probabilistic theories, although it is not yet known whether the optimal bounds are achievable in general. Hence searches for higher-order interference are not only foundationally motivated, but constitute a search for a computational resource beyond that offered by quantum computation.Comment: 17+7 pages. Comments Welcome. Published in special issue "Foundational Aspects of Quantum Information" in Foundations of Physic

    Geochronology (Re–Os and U–Pb) and fluid inclusion studies of molybdenite mineralisation associated with the Shap, Skiddaw and Weardale granites, UK

    Get PDF
    Late Devonian magmatism in Northern England records key events associated with the Acadian phase of the Caledonian-Appalachian Orogen (C-AO). Zircon U-Pb and molybdenite Re-Os geochronology date emplacement and mineralisation in the Shap (405·2±1·8 Ma), Skiddaw (398·8±0·4 and 392·3±2·8 Ma) and Weardale granites (398·3±1·6 Ma). For the Shap granite, mineralisation and magmatism are contemporaneous, with mineralisation being directly associated with the boiling of CO2-rich magmatic fluids between 300 and 450°C, and 440 and 620 bars. For the Skiddaw granite, the Re-Os age suggests that sulphide mineralisation occurred post-magmatism (398·8±0·4 Ma) and was associated with the boiling (275 and 400°C and at 375-475 bars) of a non-magmatic fluid, enriched in N2, CH4 and S, which is isotopically heavy. In contrast, the co-magmatic molybdenite mineralisation of the Weardale granite formed from non-fluid boiling at 476 to 577°C at 1-1·7 kbars. The new accurate and precise ages indicate that magmatism and Mo-mineralisation occurred during the same period across eastern Avalonia (cf. Ireland). In addition, the ages provide a timing of tectonism of the Acadian phase of the C-AO in northern England. Based on the post-tectonic metamorphic mineral growth associated with the Shap and Skiddaw granite aureoles, Acadian deformation in the northern England continued episodically (before ∼405 Ma) throughout the Emsian (∼398 Ma)

    The Attendants of Yahveh.

    Get PDF

    Ruling out higher-order interference from purity principles

    Get PDF
    As first noted by Rafael Sorkin, there is a limit to quantum interference. The interference pattern formed in a multi-slit experiment is a function of the interference patterns formed between pairs of slits, there are no genuinely new features resulting from considering three slits instead of two. Sorkin has introduced a hierarchy of mathematically conceivable higher-order interference behaviours, where classical theory lies at the first level of this hierarchy and quantum theory theory at the second. Informally, the order in this hierarchy corresponds to the number of slits on which the interference pattern has an irreducible dependence. Many authors have wondered why quantum interference is limited to the second level of this hierarchy. Does the existence of higher-order interference violate some natural physical principle that we believe should be fundamental? In the current work we show that such principles can be found which limit interference behaviour to second-order, or "quantum-like", interference, but that do not restrict us to the entire quantum formalism. We work within the operational framework of generalised probabilistic theories, and prove that any theory satisfying Causality, Purity Preservation, Pure Sharpness, and Purification---four principles that formalise the fundamental character of purity in nature---exhibits at most second-order interference. Hence these theories are, at least conceptually, very "close" to quantum theory. Along the way we show that systems in such theories correspond to Euclidean Jordan algebras. Hence, they are self-dual and, moreover, multi-slit experiments in such theories are described by pure projectors.Comment: 18+8 pages. Comments welcome. v2: Minor correction to Lemma 5.1, main results are unchange

    Orthotopic Liver Transplantation for Benign Hepatic Neoplasms

    Get PDF

    Stress corrosion cracking of titanium alloys progress report, apr. 1 - jun. 30, 1964

    Get PDF
    Hot salt stress corrosion cracking in titanium alloys - chloride corrosion role determination using chlorine isotopes and relation between crack morphology and alloy structur
    corecore