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Abstract

Grover’s algorithm constitutes the optimal quantum solution to the search problem and provides a
quadratic speed-up over all possible classical search algorithms. Quantum interference between
computational paths has been posited as a key resource behind this computational speed-up. However
there is a limit to this interference, at most pairs of paths can ever interact in a fundamental way. Could
more interference imply more computational power? Sorkin has defined a hierarchy of possible
interference behaviours—currently under experimental investigation—where classical theory is at the
first level of the hierarchy and quantum theory belongs to the second. Informally, the order in the
hierarchy corresponds to the number of paths that have an irreducible interaction in a multi-slit
experiment. In this work, we consider how Grover’s speed-up depends on the order of interference in
atheory. Surprisingly, we show that the quadratic lower bound holds regardless of the order of
interference. Thus, at least from the point of view of the search problem, post-quantum interference
does not imply a computational speed-up over quantum theory.

Grover’s algorithm [12] provides the optimal quantum solution to the search problem and is one of the most
versatile and influential quantum algorithms. The search problem—in its simplest form—asks one to find a
single ‘marked’ item from an unstructured list of N elements by querying an oracle which can recognise the
marked item. The importance of Grover’s algorithm stems from the ubiquitous nature of the search problem
and its relation to solving NP-complete problems [6]. Classical computers require O () queries to solve this
problem, but quantum computers—using Grover’s algorithm—only require O (~/N) queries. Quantum
interference between computational paths has been posited [32] as a key resource behind this computational
‘speed-up’. However, as first noted by Sorkin [29, 30], there is a limit to this interference—at most pairs of paths
can ever interact in a fundamental way. Could more interference imply more computational power?

Sorkin has defined a hierarchy of possible interference behaviours—currently under experimental
investigation [24, 27, 28]—where classical theory is at the first level of the hierarchy and quantum theory belongs
to the second. Informally, the order in the hierarchy corresponds to the number of paths that have an irreducible
interaction in a multi-slit experiment. To get a greater understanding of the role of interference in computation,
we consider how Grover’s speed-up depends on the order of interference in a theory.

Restriction to the second level of this hierarchy implies many ‘quantum-like’ features, which, at first glance,
appear to be unrelated to interference. For example, such interference behaviour restricts correlations [11] to the
‘almost quantum correlations’ discussed in [21], and bounds contextuality in a manner similar to quantum
theory[14, 23]. This, in conjunction with interference being a key resource in the quantum speed-up, suggests
that post-quantum interference may allow for a speed-up over quantum computation.

Surprisingly, we show that this is not the case—at least from the point of view of the search problem. We
consider this problem within the framework of generalised probabilistic theories, which is suitable for
describing arbitrary operationally defined theories [5, 8, 9, 13, 16, 17]. Classical probability theory, quantum
theory, Spekken’s toy model [15, 31], and the theory of PR boxes [25] all provide examples of theories in this
framework. We consider theories satisfying certain natural physical principles which are sufficient for the
existence of a well-defined search oracle. Given these physical principles, we prove thata theory atlevel i in

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Sorkin’s hierarchy requires €2(\/N/h) queries to solve the search problem. Thus, post-quantum interference
does not imply a computational speed-up over quantum theory. Moreover, from the point of view of the search
problem, all (finite) orders of interference are asymptotically equivalent.

1. Generalised probabilistic theories

A basic requirement of any physical theory is that it should provide a consistent account of experimental data.
This idea underlies the framework of generalised probabilistic theories—developed in [4, 8, 9, 13]—which
allows for the description of arbitrary theories satisfying this requirement. Informally, a theory in this
framework specifies a set of physical processes which can be connected together to form experiments. Each
process corresponds to a single use of a piece of laboratory apparatus, each having a number of input and output
ports, as well as a classical pointer. When the physical apparatus is used in an experiment, the classical pointer
comes to rest at one of a number of positions, indicating a specific outcome has occurred. Each port is associated
with a physical system of a particular type (labelled A, B, ...). Intuitively one can consider these physical systems
as passing from outputs of one process to inputs of another. Processes can thus be connected together—both in
sequence and in parallel—to form circuits, where it is required that types match and there are no cycles.

1 A

U/ b3 ,
123 A @
@W

C

B

Closed circuits (i.e. circuits with no disconnected ports) correspond to the probability of obtaining a particular
set of outcomes from the experiment represented by that circuit. Processes that yield the same probabilities in all
closed circuits are identified, giving rise to equivalence classes of processes. Each element of such an equivalence
class has the same input and output ports, and are denoted 4T3 € 475, where 473 is the set of possible
transformations from systems A to B. Transformations with no input ports are called states Sy € Sy, and no
output ports, effects, .E € 4&.

Given the probabilistic structure provided by closed circuits, each transformation 4Ty can be associated with
areal vector such that the set 473 is a subset of some real vector space, denoted 4V [8]. We assume in this work
that all vector spaces are finite dimensional. It can be shown that transformations and effects act linearly on the
vector space of states, V4 [8]. A measurement corresponds to a set of effects {e"} labelled by the position of the
classical pointer r. The probability of preparing state s and observing outcome r is (suppressing system types for
readability) given by:

e’ (s) = P(r, s).

A state is pureif it does not arise as a coarse-graining of other states’; a pure state is one for which we have
maximal information. A state is mixed if it is not pure. Similarly, one says a transformation is pure if it does not
arise as a coarse-graining of other transformations. It can be shown that reversible transformations preserve
pure states [9].

We now introduce five physical principles which will be assumed throughout the rest of this work. These can
be though of as an abstraction of basic characteristics of the behaviour of information in quantum theory. Note
however that these principles are not unique to quantum theory, indeed, real vector space quantum theory,
fermionic quantum theory and the classical theory of pure states each satisfy all of these principles.

Principle 1. Causality [8]: there exists a unique deterministic effect 4U for every system A, suchthat >, e’ = U
for all measurements, {e’},.

In quantum theory the unique deterministic effect is provided by the partial trace. Mathematically, causality
is equivalent to the statement: ‘probabilities of present experiments are independent of future measurement
choice’ [8], and so this can be interpreted as saying that ‘information propagates from present to future’.

The deterministic effect allows one to define a notion of marginalisation for multipartite states.

® The process {U;}je v, where jindexes the classical pointer, is a coarse-graining of {£;};c x if there is a disjoint partition {X;}jcy of Xsuch

that U; = Ziexj &




10P Publishing

NewJ. Phys. 18 (2016) 093047 CM Leeand ] H Selby

Principle 2. Purification [8]: given a state s, there exists a system Band a pure state S,z on AB such that s, is the
marginalisation of Sy:

BU (SaB) = sa.

Moreover, the purification S, is unique up to reversible transformations on the purifying system, B".

For example, in quantum theory any mixed state p = Y, p.|4;) (1| can be written as p = trg(|¥) (¥|4p),
where [U),p == Y, \/E |4} |i). Moreover, any other purification @)AB must satisfy [U)45 = ([ ® Ug| 3>A3)
with Up a unitary transformation. More generally this can be thought of as saying that information cannot be
fundamentally destroyed, only discarded.

Principle 3. Purity preservation [ 10]: the composite of pure transformations is pure.

Pure transformations in quantum theory can be characterised by having Kraus rank 1. Given two such
transformations, their sequential or parallel composition will each also be rank 1, and so composition preserves
purity.

Principle 4. Pure sharp effect [10]: for each system A there exists a pure effect that occurs with unit probability
on some state.

Pure states {a'}l"_| are perfectly distinguishable if there exists a measurement, corresponding to effects { ¢/ Yizo
such that e/ (a') = §; forall i, j. For example, in quantum theory the computational basis {|) } provide a

perfectly distinguishable set, where the corresponding effects are just { ( j|} such that ( j|i) = 6;. Such an n-tuple
of states can reliably encode an n-level classical system.

Principle 5. Strong symmetry [3]: for any two n-tuples of pure and perfectly distinguishable states {a’}, and {5},
there exists a reversible transformation T'such that T (a’) = b’ for all i.

An example in quantum theory is the Hadamard transformation reversibly mapping between the bases
{10), 11) }and {|+), | ) }.

These last two principles imply that one can encode classical data in a system, and moreover, thatany
encoding is equivalent. In other words, information is independent of the encoding medium.

Principles 1-4 imply the following result (see [ 10] for a proof): for any given state s, there exists a natural
number 7 and a set of pure and perfectly distinguishable states {a'}}_; such that s = 3", p.a;, where
0<p <L Viand )} ;p. = L

This result, together with principle 5, implies the existence of a ‘self-dualising’ [3, 20] inner product (-,).
That s, to every pure state s, there is associated a unique pure effect e’, satisfying e*(s) = 1, such that:
e°(-) = (s, -). This inner product is invariant under all reversible transformations; satisfies 0 < (r, s) < 1forall
states r, s; (s, s) = 1forall purestates s;and (s, r) = 0if sand rare perfectly distinguishable. It also gives rise to
thenorm ||-|| = m , satisfying ||s|| < 1for all states s, with equality for pure states. We will make use of this
norm in proving our main result.

2. Higher-order interference

Informally, a theory is said to have nth order interference if one can generate interference patterns in an n-slit
experiment which cannot be created in any experiment with only m-slits, forall m < n.

Multiple slits — Interference pattern
AN I

Source

N\

Screen

Paths k \\J\

Block

More precisely, this means that the interference pattern created on the screen cannot be written as a particular
linear combination of the patterns generated when different subsets of slits are blocked. In the two slit

4 ipe . . . .
Two states Syzand S,Q p purifying s, satisfy Sup = [ ®p T (S4p), with 5Ty areversible transformation.
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experiment, quantum interference corresponds to the fact that the interference pattern cannot be written as the
sum of the single slit patterns:

I I
B
I I
It was first shown by Sorkin [29, 30] that—at least for ideal experiments [26]—quantum theory is limited to the

n = 2 case. That s, the interference pattern created in a three—or more—slit experiment can be written in
terms of the two and one slit interference patterns obtained by blocking some of the slits. Schematically:

| . | | . |
el
I I I . I .

Ifa theory does not have nth order interference then one can show it will not have mth order interference, for
any m > n[29]. Assuch, one can classify theories according to their maximal order of interference, h. For
example quantum theoryliesat 1 = 2 and classical theoryat h = 1.

Higher order interference was initially formalised by Sorkin in the framework of quantum measure theory
[29] but has more recently been adapted to the setting of generalised probabilistic theories in [3, 18, 19, 33]. The
most direct translation to this setting describes the order of interference in terms of probability distributions
corresponding to the different experimental setups (which slits are open, etc) [ 18]. However, given our five
principles, it is possible to define physical transformations that correspond to the action of blocking certain
subsets of slits. In this case, there is a more convenient (and equivalent, given the five princples) definition in
terms of such transformations [3].

If there are N slits, labelled 1, ..., N, these transformations are denoted P, where I C {1,...,N} := N
corresponds to the subset of slits which are not blocked. In general we expect that P, P; = P, as only those slits
belonging to both I and Jwill not be blocked by either P; or P;. This intuition suggests that these transformations
should correspond to projectors (i.e. idempotent transformations P, P; = Pr). Given principles 1-5, it was
shown in [3] that this is indeed the case. Given this structure, one can define the maximal order of interference as
follows [3].

Definition 1. A theory satisfying principles 1-5 has maximal order of interference A if, for any N > h, one has:

JlN = Z C(h) |I|) N)PI)
ICN
1<h

where Iy is the identity on a system with N pure and perfectly distinguishable states and

N—|I| — 1)

i= (— 1)1
Clh, 11l N) = (1) ( b

The factor C(h, |I|, N) in the above definition corrects for the overlaps that occur when different combinations
of slits are blocked. Note that, for the case h = N, this reduces to the expected expression of I, = Py, 5 i.e.
the identity is given by the projector with all slits open. The case of N = h + 1 corresponds to

C(h, 1|, h + 1) = (—1)""HI which is the situation depicted in the previous figures, as well as the one most
commonly discussed in the literature [29, 33].

Rather than work directly with these physical projectors, it is mathematically more convenient to work with
(generally) unphysical transformations corresponding to projectors onto the ‘coherences’ of a state. For
example, in the case of a qutrit, the projector Pyq ;) projects onto a two-dimensional subspace:

Poo Por Poz Poo Por O
Pogy|Po Pu Pl |p, piy O
P P2 P2 0 0 O

while the coherence-projector wyg,1} projects only onto the coherences in that two-dimensional subspace:

Poo Por Poz 0 py O
wioy | Po P P p, 0 OF
P P21 P2 0 0 0

That is, wyo,1 corresponds to the linear combination of projectors: Pig,1; — Pioy — Py1).

4
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There is a coherence-projector wy for each subset of slits I C N, defined in terms of the physical projectors:

wp = > (= DIHTIpy,
IcI

These have the following useful properties, proved in appendix.

Lemma 1. An equivalent definition of the maximal order of interference, h, is: Iy = Z;;,I j=1wn forall N > h.

The above lemma implies that any state (indeed, any vector in the vector space generated by the states) can be
decomposed as s = E?,IIIZI s, where s := wys.

Lemma 2. ‘Coherences are orthogonal’: () wyw; = éywy, forall I, J and (i) ||s|* = > ||wrs|

3. Setting up the problem

In the standard search problem, one is asked to find a specific ‘marked’ item from among a large collection of
items in some unstructured list. The items are indexed 1, ..., N and one has access to an oracle, which, when
asked whether item i is the marked item, denoted x, returns the answer ‘yes’ or ‘no’. Informally, the search
problem asks for the minimal number of queries to this oracle required to find x in the worst case.

In the standard bra-ket formalism of quantum theory, this oracle corresponds to a controlled unitary
transformation U, defined by its action on the (product) computational basis: Uli) |q) = |i)|q @ f (i)), where
|7} is the index, or control, register, |g) is the target register, & denotes addition modulo 2 and
f:{1,...,N} — {0, 1} satisfies f (i) = lifand onlyifi = x. Inputting | —) into the target register results in a
phase being ‘kicked-back’ to the control register: Ui)| — ) = (—1)/@]i)| — ). Discarding the target register
reduces the action of the oracle to applying the phase transformation O,|i) = (—1)/ @|i). Changing to the
density matrix formalism, we see that this phase oracle, whose action on states p is now denoted by O, p, acts as
the identity on the diagonal elements of all density matrices while adding a ‘—’ to the off diagonal
elements {p,;, o, }i-

Previous work [ 18] has shown that the conjunction of principles 1, 2, 3 and 5 implies the existence of
reversible controlled transformations. These can be used to define oracles in a manner analogous to quantum
theory [18]. Moreover, every controlled transformation gives rise to a ‘kicked-back’ reversible phase
transformation on the control system [ 18]. Thus—as in quantum theory—from the point of view of querying
the oracle, we can reduce all considerations involving the controlled transformation to those involving the
kicked-back phase.

To highlight the role of interference in searching an unstructured list, we describe the action of querying the
oracle in terms of the physically motivated set-up of N-slit experiments. Consider first the quantum case. Note
that an N-slit experiment defines a set of N pure and perfectly distinguishable states |) (|, each of which can be
associated to a distinct element in the N item list. Querying the oracle about item i is equivalent to applying the
oracle transformation to state |i) (i|. In quantum theory, preparing such a state can be achieved by passing a
uniform superposition through the N-slit experiment with all but the ith slit blocked. The oracle can be
implemented by placing a phase shifter behind slit x. Querying the oracle in a superposition of states can then be
achieved by varying which slits are blocked. This is illustrated schematically below:

‘ N / @ _
| |

As discussed previously, the physical act of blocking slits is represented by the projectors P;. The action of the
quantum oracle can thus be rephrased in terms of these projectors: (i) O,P; = Py, if x ¢ I or|I| = 1and, (ii) O,
can act non-trivially on projectors Pywith x € I and |I| > 1,but mustsatisfy O.P; = P; O,, for all P, which
corresponds to the fact that a quantum oracle does not ‘create’ or ‘destroy’ coherence between states passing
through different slits.

By analogy with the quantum case we can define the oracle which encodes the search problem in theories
satisfying principles 1-5 as follows. Note that in this paper we only deal with the case of a single marked item.

Definition 2. A reversible transformation is a search oracle, denoted O,;, if and only if:

(i) OP;=Pforallx ¢ I or |I| = 1 and,
(11) OXP[ = P[ Ox> for all P].
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In the above definition, the requirement O, P; = P; O,, for all Py, is quite natural. This requirement ensures that
one cannot gain any information about item i when querying the oracle using a state with no supporton i, i.e. a
state ssuch that ;s = swhere i & I.Inan arbitrary theory, it may not be the case that a transformation
satisfying definition 2 and acting non-trivially on Py, with x € I, exists. This is not an issue as in such theories we
cannot even define the search problem, let alone show it can be solved using fewer queries than quantum theory.
In this work, we shall assume the existence of a search oracle in any theory we consider. Given the definition of
coherence-projectors w; we can equivalently write definition 2 as: O.w; = wy, for x € Ior|I| = 1,and

Owr = wy O,, forall I Indeed, in the quantum case, the action of the oracle can be equivalently described as:
Owr =wr ifx €1 or|l] = 1,and Ow; = —w; otherwise.

We can now formally state the search problem for a single marked item—defined for the quantum case in
7,22, 34]—as:
Search problem. Given an N element list with search oracle O, and an arbitrary collection of reversible

transformations { G;}, what is the minimal k € N such that Gy O,Gy_ ... G; O;s can be found, with probability
greater than 1/2, to be in the state x, for arbitrary state s, averaged over all possible marked items?

4, Main result

Theorem 1. In theories satisfying principles 1-5, with finite maximal order of interference h, the number of queries
needed to solve the search problem is Q({JN /h).

Proof. Proof of theorem 1. The basic idea is based on the proof of the quantum case presented in [7, 22, 34]. Let

S]iC = Gk Okafl... G1 OXS,
Sk = Gka_l Gls,

where G;is some reversible transformation from the theory, and define

Dr = |Is¢ — sl
X

It will be shown that, for (x, s{) > 1/2,wehave cN < Dy < 4hk?, where cis any constant less than (2 — 1%
from which theresult k > O \/g follows. The lower bound goes through as in the quantum case and is

derived in appendix A.4. The upper bound will now be proved by induction.
We have

Diy1 =Gk (Ousf = s |P = D)1 Ousf — si?
=S NOc(sE = 50 + (O — D
<o llsE = sel?
+ 23 [0 = soll11(Ox = Dl

+ 21O = DselP

< Dy 42 \/Dkzu(ox — Dsi|P + (O — Dse|P

2
< (\/D_k + olla— Ox)skz) ,

which follows from the triangle inequality, the Cauchy—Schwarz inequality, and the fact the norm is invariant
under reversible transformations.

The quantity > || (1 — O,)s ||>—which can be thought of as how much some state is ‘moved” in a single
query, averaged over all possible marked items x—is the only theory dependent quantity that features in this
proof. We upper bound it as follows:
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2Nl = Osel?

=> > I = OywrsiP
x I

=> > llwr@ = OJsill?
x I

|11>1
xel

<O (Ulwysell + 1Owrs])?
1

111>1
x€l

<O AlwrsllPs
PR

111>1
xel

where the first line follows from lemmas 1 and 2, and the definition of the search oracle O,, and second from the
triangle inequality and the fact that the norm is invariant under reversible transformations. We need to know
how many times each ||wy sy ||* appears when we sum over the marked item x. Each given I = {iy, i, ,..., ij} will
appear |I| times as we sum over x, one for every time i;is the marked item. Thus

DA = OgselP < D7 4lllllwrsill?
1
* |[11>1
<4 Mllwrsel? < 4k llwrsel? = 4hllse]* < 4h.
I 1

The second line follows from 37, [lwy s [ > 0,lemma?2, [|s¢[| < 1,and |I] < h, forall . We thus have:

=
Dii1 < (JDy + V4h)?. Assuming that Dy < 4hk? givesus Dy, 1 < 4h(k + 1)?, from which the result follows
via induction. O

5. Discussion

In this work, we considered theories satisfying certain natural physical principles which are sufficient for the
existence of controlled transformations and a phase kick-back mechanism, necessary features for a well-defined
search oracle. Given these physical principles, we proved that a theory with maximal order of interference h
requires 2(y/N/h) queries to this oracle to find a single marked item from some N-element list. This result
challenges our pre-conceived notions about how quantum computers achieve their computational advantage
and is somewhat surprising as one might expect more interference to imply more computational power. Further
work will focus on determining sufficient physical principles for there to exist an algorithm that achieves the
quadratic lower bound derived here.

Recent work has also investigated Grover’s algorithm from the point of view of post-quantum theories [1, 2].
These works considered modifications of quantum theory which allow for superluminal signalling and cloning
of states. In contrast, the generalised probabilistic theory framework employed here allowed us to investigate
Grover’s lower bound in alternate theories that are physically reasonable and which, for example, do not allow
for superluminal signalling [4] or cloning [35].

As theories satisfying our five physical principles appear ‘quantum-like’—at least from the point of view of
the search problem—investigating interference behaviour in them may inform current experiments searching
for post-quantum interference.
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Appendix. Results for coherences

A.1.Proofoflemma 1
In a theory with maximal order of interference h one has

JlN = Z C(h7 |I|) N)PI
ICN
[I<h

Thus, showing Iy = Z|h]|:1 wy reduces to showing

h
Y wr= Y C(h, 1|, N)P,.
|[I]=1 ICN
[I|<h

Aswy == Y jo (= DIHIIP; we just have to count the number of P;’s that appear as we sum over |I|. For some
fixed I, this is just

h N —|I|
_ 1)l
> (=D f(am).

a=[I|

By expanding and rearranging this, one can straightforwardly (if tediously) show that this equals C(h, |I|, N),
and we are done.

A.2.Proof oflemma 2 part (i)
From the definition of wy, it follows that

wiwy = (— 1)|I|+|IIZZ (— 1)|T|+|7|p7p7
icrjgy

= (—DMV ST D, J, K) Py,
Rcing

where D(I, J, K) is the number of distinct pairings of I and J suchthat I N ] = K and |I| + |J|is even,
minus the number of distinct pairings where I N J = K and |I| + |J |is odd. It will now be shown that

~ { 0 if 1= J,
DU, ],K) = o
(=DUIHIKL f T =7,
Forthe I = ] case fix some particular i € I suchthati & J and consider some I C1,T C Jsuchthat
INnj=K.Ifx ¢ T alter I byadding i, otherwise alter I by removing x. This procedure turns each even
IT| + |J|, odd. We have thus shown thatforeach I C Iand J C Jsuchthatl N ] = K and II| + [T |is even,
there existsan I’ C I'suchthat I’ N J = K and II’| + |T|is odd, and vice versa. Thus the number of distinct
pairingsof I and J suchthatT N ] = K and IT| + |J|is even is equal to the number of distinct pairings of T
and J suchthatT N ] = I?andlﬂ + |Jlisodd, and so D(I, J, fI?) = (OwhenI = J.
For the I = ] case we can make a similar argument by pickingsome i € I, i £ J except for when
J = ] = I.This case gives an excess +1 depending on whether |J| + |K]is odd or even, implying
DA, J, ) = (=) 1+K]whenT = 7.
This immediately gives wyw; = 0if I = J and

wiwy = (1S (~ 1)1 RIPy = oy,
RCI

ifl =J.

A.3.Proof oflemma 2 part (ii)

To prove the lemma, we need the fact that the wy’s are self-dual w}( = wy, where the { is defined by the the self-
dualising inner-productas: (-, wy - ) = {(w} - , -). Recalling that the w;’s correspond to linear combinations of
the Py’s, this follows immediately from self-duality of the projectors P, which is proved in [3] (Recall that our
principles 1-5 imply the first two axioms of [3].). We now have
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sl = (s, s) = O _wrs, D_wys)
I ]
= Z(w;s, wys) = Z(s, whwys)

L] L]
= > (s, wiwys) =D 6y (s, wis),
L] L]

where the last equality follows from the orthogonality of the wy’s. Finally

[sIP =" (s, wis) = > {wrs, wrs) =Y [lwys]P.

1 1

A.A4.Proofof D, > cN
We assume that (x, s{") > 1/2 forall x, so ameasurement of s’ yields a solution to the search problem with
probability atleast 1/2.Let By = 3°_ ||si — x|?and Fy = 3 ||sx — x| It follows that

DEc =Y 21 — (x s{)) <> 2(1 —1/2) < N and,

(D F > 2N — [lsel| [(3ox >op) [ = 20N = VN,
x y

where (ii) follows from the Cauchy-Schwarz inequality, ||sy|| < 1and (x, y) = é,. As explicitly calculated on
page 270 of [22], by using the reverse triangle inequality and the Cauchy—Schwarz inequality, it follows that

Dy > (\/Fk — \/Fk )2. Combing this with the upper bound on Ej and the lower bound on Fy, we have that

Dy = cN, for sufficiently large N, where cis any constant less than (2 = 1)? =~ 0.17.
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