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Deriving Groverʼs lower bound from simple physical principles
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Abstract
Groverʼs algorithm constitutes the optimal quantum solution to the search problem and provides a
quadratic speed-up over all possible classical search algorithms.Quantum interference between
computational paths has been posited as a key resource behind this computational speed-up.However
there is a limit to this interference, atmost pairs of paths can ever interact in a fundamental way. Could
more interference implymore computational power? Sorkin has defined a hierarchy of possible
interference behaviours—currently under experimental investigation—where classical theory is at the
first level of the hierarchy and quantum theory belongs to the second. Informally, the order in the
hierarchy corresponds to the number of paths that have an irreducible interaction in amulti-slit
experiment. In this work, we consider howGroverʼs speed-up depends on the order of interference in
a theory. Surprisingly, we show that the quadratic lower bound holds regardless of the order of
interference. Thus, at least from the point of view of the search problem, post-quantum interference
does not imply a computational speed-up over quantum theory.

Groverʼs algorithm [12] provides the optimal quantum solution to the search problem and is one of themost
versatile and influential quantumalgorithms. The search problem—in its simplest form—asks one tofind a
single ‘marked’ item froman unstructured list ofN elements by querying an oracle which can recognise the
marked item. The importance ofGroverʼs algorithm stems from the ubiquitous nature of the search problem
and its relation to solvingNP-complete problems [6]. Classical computers require ( )O N queries to solve this
problem, but quantum computers—usingGroverʼs algorithm—only require ( )O N queries. Quantum
interference between computational paths has been posited [32] as a key resource behind this computational
‘speed-up’. However, asfirst noted by Sorkin [29, 30], there is a limit to this interference—atmost pairs of paths
can ever interact in a fundamental way. Couldmore interference implymore computational power?

Sorkin has defined a hierarchy of possible interference behaviours—currently under experimental
investigation [24, 27, 28]—where classical theory is at thefirst level of the hierarchy and quantum theory belongs
to the second. Informally, the order in the hierarchy corresponds to the number of paths that have an irreducible
interaction in amulti-slit experiment. To get a greater understanding of the role of interference in computation,
we consider howGroverʼs speed-up depends on the order of interference in a theory.

Restriction to the second level of this hierarchy impliesmany ‘quantum-like’ features, which, atfirst glance,
appear to be unrelated to interference. For example, such interference behaviour restricts correlations [11] to the
‘almost quantum correlations’ discussed in [21], and bounds contextuality in amanner similar to quantum
theory [14, 23]. This, in conjunctionwith interference being a key resource in the quantum speed-up, suggests
that post-quantum interferencemay allow for a speed-up over quantum computation.

Surprisingly, we show that this is not the case—at least from the point of view of the search problem.We
consider this problemwithin the framework of generalised probabilistic theories, which is suitable for
describing arbitrary operationally defined theories [5, 8, 9, 13, 16, 17]. Classical probability theory, quantum
theory, Spekkenʼs toymodel [15, 31], and the theory of PR boxes [25] all provide examples of theories in this
framework.We consider theories satisfying certain natural physical principles which are sufficient for the
existence of a well-defined search oracle. Given these physical principles, we prove that a theory at level h in
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Sorkinʼs hierarchy requires ( )W N h queries to solve the search problem. Thus, post-quantum interference
does not imply a computational speed-up over quantum theory.Moreover, from the point of view of the search
problem, all (finite) orders of interference are asymptotically equivalent.

1.Generalised probabilistic theories

Abasic requirement of any physical theory is that it should provide a consistent account of experimental data.
This idea underlies the framework of generalised probabilistic theories—developed in [4, 8, 9, 13]—which
allows for the description of arbitrary theories satisfying this requirement. Informally, a theory in this
framework specifies a set of physical processeswhich can be connected together to form experiments. Each
process corresponds to a single use of a piece of laboratory apparatus, each having a number of input and output
ports, as well as a classical pointer.When the physical apparatus is used in an experiment, the classical pointer
comes to rest at one of a number of positions, indicating a specific outcome has occurred. Each port is associated
with a physical system of a particular type (labelled ¼A B, , ). Intuitively one can consider these physical systems
as passing fromoutputs of one process to inputs of another. Processes can thus be connected together—both in
sequence and in parallel—to form circuits, where it is required that typesmatch and there are no cycles.

Closed circuits (i.e. circuits with no disconnected ports) correspond to the probability of obtaining a particular
set of outcomes from the experiment represented by that circuit. Processes that yield the same probabilities in all
closed circuits are identified, giving rise to equivalence classes of processes. Each element of such an equivalence
class has the same input and output ports, and are denoted ÎTA B A B, where A B is the set of possible
transformations from systemsA toB. Transformations with no input ports are called states ÎSA A, and no
output ports, effects, ÎEA A .

Given the probabilistic structure provided by closed circuits, each transformation TA B can be associatedwith
a real vector such that the set A B is a subset of some real vector space, denoted VA B [8].We assume in this work
that all vector spaces are finite dimensional. It can be shown that transformations and effects act linearly on the
vector space of states,VA [8]. Ameasurement corresponds to a set of effects { }er labelled by the position of the
classical pointer r. The probability of preparing state s and observing outcome r is (suppressing system types for
readability) given by:

( ) ( )=e s P r s, .r

A state is pure if it does not arise as a coarse-graining of other states3; a pure state is one forwhichwe have
maximal information. A state ismixed if it is not pure. Similarly, one says a transformation is pure if it does not
arise as a coarse-graining of other transformations. It can be shown that reversible transformations preserve
pure states [9].

We now introduce five physical principles whichwill be assumed throughout the rest of this work. These can
be though of as an abstraction of basic characteristics of the behaviour of information in quantum theory. Note
however that these principles are not unique to quantum theory, indeed, real vector space quantum theory,
fermionic quantum theory and the classical theory of pure states each satisfy all of these principles.

Principle 1.Causality [8]: there exists a unique deterministic effect UA for every systemA, such thatå =e Ur
r

for allmeasurements, { }er
r .

In quantum theory the unique deterministic effect is provided by the partial trace.Mathematically, causality
is equivalent to the statement: ‘probabilities of present experiments are independent of futuremeasurement
choice’ [8], and so this can be interpreted as saying that ‘information propagates frompresent to future’.

The deterministic effect allows one to define a notion ofmarginalisation formultipartite states.

3
The process { } Îj j Y , where j indexes the classical pointer, is a coarse-graining of { } Îi i X if there is a disjoint partition { }ÎXj j Y ofX such

that  = å Îj i X ij
.

2
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Principle 2.Purification [8]: given a state sA there exists a systemB and a pure state SAB onAB such that sA is the
marginalisation of SAB:

( ) =U S s .B AB A

Moreover, the purification SAB is unique up to reversible transformations on the purifying system,B4.

For example, in quantum theory anymixed state ∣ ∣r y y= å ñápi i i i can bewritten as (∣ ∣ )r = YñáYtrB AB ,

where ∣ ≔ ∣ ∣yYñ å ñ ñp iAB i i i .Moreover, any other purification ∣Yñ~ AB must satisfy ∣ ( ∣ )Yñ = Ä Yñ
~

UAB A B AB

withUB a unitary transformation.More generally this can be thought of as saying that information cannot be
fundamentally destroyed, only discarded.

Principle 3.Purity preservation [10]: the composite of pure transformations is pure.

Pure transformations in quantum theory can be characterised by havingKraus rank 1. Given two such
transformations, their sequential or parallel compositionwill each also be rank 1, and so composition preserves
purity.

Principle 4.Pure sharp effect [10]: for each systemA there exists a pure effect that occurswith unit probability
on some state.

Pure states { }=ai
i
n

1 are perfectly distinguishable if there exists ameasurement, corresponding to effects { } =e j
j
n

1,

such that ( ) d=e aj i
ij for all i j, . For example, in quantum theory the computational basis {∣ }ñi provide a

perfectly distinguishable set, where the corresponding effects are just { ∣}á j such that ∣ dá ñ =j i ij. Such an n-tuple
of states can reliably encode an n-level classical system.

Principle 5. Strong symmetry [3]: for any two n-tuples of pure and perfectly distinguishable states { }ai , and { }b ,i

there exists a reversible transformationT such that ( ) =T a bi i for all i.

An example in quantum theory is theHadamard transformation reversiblymapping between the bases
{∣ ∣ }ñ ñ0 , 1 and {∣ ∣ }+ñ -ñ, .

These last two principles imply that one can encode classical data in a system, andmoreover, that any
encoding is equivalent. In otherwords, information is independent of the encodingmedium.

Principles 1–4 imply the following result (see [10] for a proof): for any given state s, there exists a natural
number n and a set of pure and perfectly distinguishable states { }=ai

i
n

1 such that = ås p ai i i, where
  "p i0 1,i and å =p 1i i .
This result, together with principle 5, implies the existence of a ‘self-dualising’ [3, 20] inner product · ·á ñ, .

That is, to every pure state s, there is associated a unique pure effect e s, satisfying ( ) =e s 1s , such that:
(·) ·= á ñe s,s . This inner product is invariant under all reversible transformations; satisfies  á ñr s0 , 1 for all

states r s, ; á ñ =s s, 1 for all pure states s; and á ñ =s r, 0 if s and r are perfectly distinguishable. It also gives rise to

the norm · · ·  = á ñ, , satisfying  s 1 for all states s, with equality for pure states.Wewillmake use of this
norm in proving ourmain result.

2.Higher-order interference

Informally, a theory is said to have nth order interference if one can generate interference patterns in an n-slit
experiment which cannot be created in any experiment with onlym-slits, for all <m n.

More precisely, thismeans that the interference pattern created on the screen cannot bewritten as a particular
linear combination of the patterns generatedwhen different subsets of slits are blocked. In the two slit

4
Two states SAB and ¢SAB purifying sA satisfy ( )= Ä ¢S T SAB B B AB , with TB B a reversible transformation.

3
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experiment, quantum interference corresponds to the fact that the interference pattern cannot bewritten as the
sumof the single slit patterns:

It wasfirst shownby Sorkin [29, 30] that—at least for ideal experiments [26]—quantum theory is limited to the
n=2 case. That is, the interference pattern created in a three—ormore—slit experiment can bewritten in
terms of the two and one slit interference patterns obtained by blocking some of the slits. Schematically:

If a theory does not have nth order interference then one can show it will not havemth order interference, for
any >m n [29]. As such, one can classify theories according to theirmaximal order of interference, h. For
example quantum theory lies at =h 2 and classical theory at =h 1.

Higher order interference was initially formalised by Sorkin in the framework of quantummeasure theory
[29] but hasmore recently been adapted to the setting of generalised probabilistic theories in [3, 18, 19, 33]. The
most direct translation to this setting describes the order of interference in terms of probability distributions
corresponding to the different experimental setups (which slits are open, etc) [18]. However, given ourfive
principles, it is possible to define physical transformations that correspond to the action of blocking certain
subsets of slits. In this case, there is amore convenient (and equivalent, given the five princples) definition in
terms of such transformations [3].

If there areN slits, labelled ¼ N1, , , these transformations are denoted PI, where { } ≔Í ¼I N N1, ,
corresponds to the subset of slits which are not blocked. In general we expect that = ÇP P PI J I J , as only those slits
belonging to both I and Jwill not be blocked by either PI orPJ. This intuition suggests that these transformations
should correspond to projectors (i.e. idempotent transformations =P P PI I I). Given principles 1–5, it was
shown in [3] that this is indeed the case. Given this structure, one can define themaximal order of interference as
follows [3].

Definition 1.A theory satisfying principles 1–5 hasmaximal order of interference h if, for any N h, one has:

( ∣ ∣ )

∣ ∣





å=
Í

 h I N P, , ,N
I

I h

I
N

where N is the identity on a systemwithN pure and perfectly distinguishable states and

( ∣ ∣ ) ≔ ( ) ∣ ∣
∣ ∣

∣ ∣ -
- -
-

-
⎛
⎝⎜

⎞
⎠⎟h I N

N I

h I
, , 1

1
.h I

The factor ( ∣ ∣ ) h I N, , in the above definition corrects for the overlaps that occurwhen different combinations
of slits are blocked.Note that, for the case =h N , this reduces to the expected expression of { }= ¼ Ph h1, , i.e.
the identity is given by the projector with all slits open. The case of = +N h 1corresponds to

( ∣ ∣ ) ( ) + = - -h I h, , 1 1 h I , which is the situation depicted in the previousfigures, as well as the onemost
commonly discussed in the literature [29, 33].

Rather thanwork directly with these physical projectors, it ismathematicallymore convenient toworkwith
(generally) unphysical transformations corresponding to projectors onto the ‘coherences’ of a state. For
example, in the case of a qutrit, the projector { }P 0,1 projects onto a two-dimensional subspace:

{ } 
r r r
r r r
r r r

r r
r r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟P ::

0

0

0 0 0
0,1

00 01 02

10 11 12

20 21 22

00 01

10 11

while the coherence-projector { }w 0,1 projects only onto the coherences in that two-dimensional subspace:

{ } w
r r r
r r r
r r r

r
r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟::

0 0

0 0

0 0 0

.0,1

00 01 02

10 11 12

20 21 22

01

10

That is, { }w 0,1 corresponds to the linear combination of projectors: { } { } { }- -P P P0,1 0 1 .

4
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There is a coherence-projector wI for each subset of slits ÍI N, defined in terms of the physical projectors:

≔ ( )
˜

∣ ∣ ∣ ˜∣ ˜åw -
Í

+ P1 .I
I I

I I
I

These have the following useful properties, proved in appendix.

Lemma1.An equivalent definition of themaximal order of interference, h, is: w= å = ,N I I
h

I, 1 for all N h.

The above lemma implies that any state (indeed, any vector in the vector space generated by the states) can be
decomposed as = å =s s ,I I

h
I, 1 where ≔ ws sI I .

Lemma2. ‘Coherences are orthogonal’: ( )w w d w=i I J IJ I , for all I J, and ( )  w= ås sii I I
2 2.

3. Setting up the problem

In the standard search problem, one is asked tofind a specific ‘marked’ item from among a large collection of
items in some unstructured list. The items are indexed ¼ N1, , and one has access to an oracle, which, when
askedwhether item i is themarked item, denoted x, returns the answer ‘yes’ or ‘no’. Informally, the search
problem asks for theminimal number of queries to this oracle required tofind x in theworst case.

In the standard bra-ket formalism of quantum theory, this oracle corresponds to a controlled unitary
transformationU, defined by its action on the (product) computational basis: ∣ ∣ ∣ ∣ ( )ñ ñ = ñ Å ñU i q i q f i ,where
∣ ñi is the index, or control, register, ∣ ñq is the target register,Å denotes additionmodulo 2 and

{ } { }¼ f N: 1, , 0, 1 satisfies ( ) =f i 1 if and only if i=x. Inputting ∣-ñ into the target register results in a
phase being ‘kicked-back’ to the control register: ∣ ∣ ( ) ∣ ∣( )ñ - ñ = - ñ - ñU i i1 .f i Discarding the target register
reduces the action of the oracle to applying the phase transformation ∣ ( ) ∣( )ñ = - ñO i i1x

f i . Changing to the
densitymatrix formalism,we see that this phase oracle, whose action on states ρ is nowdenoted by rx , acts as
the identity on the diagonal elements of all densitymatrices while adding a ‘−’ to the off diagonal
elements { }r r, .xi ix i

Previous work [18]has shown that the conjunction of principles 1, 2, 3 and 5 implies the existence of
reversible controlled transformations. These can be used to define oracles in amanner analogous to quantum
theory [18].Moreover, every controlled transformation gives rise to a ‘kicked-back’ reversible phase
transformation on the control system [18]. Thus—as in quantum theory—from the point of view of querying
the oracle, we can reduce all considerations involving the controlled transformation to those involving the
kicked-back phase.

To highlight the role of interference in searching an unstructured list, we describe the action of querying the
oracle in terms of the physicallymotivated set-up ofN-slit experiments. Consider first the quantum case. Note
that anN-slit experiment defines a set ofN pure and perfectly distinguishable states ∣ ∣ñái i , each of which can be
associated to a distinct element in theN item list. Querying the oracle about item i is equivalent to applying the
oracle transformation to state ∣ ∣ñái i . In quantum theory, preparing such a state can be achieved by passing a
uniform superposition through theN-slit experiment with all but the ith slit blocked. The oracle can be
implemented by placing a phase shifter behind slit x. Querying the oracle in a superposition of states can then be
achieved by varyingwhich slits are blocked. This is illustrated schematically below:

As discussed previously, the physical act of blocking slits is represented by the projectors PI. The action of the
quantumoracle can thus be rephrased in terms of these projectors: (i) =P Px I I , if Ïx I or ∣ ∣ =I 1and, (ii)x

can act non-trivially on projectors PIwith Îx I and ∣ ∣ >I 1, butmust satisfy =P Px I I x , for allPI, which
corresponds to the fact that a quantumoracle does not ‘create’ or ‘destroy’ coherence between states passing
through different slits.

By analogywith the quantum casewe can define the oracle which encodes the search problem in theories
satisfying principles 1–5 as follows. Note that in this paperwe only deal with the case of a singlemarked item.

Definition 2.A reversible transformation is a search oracle, denotedx , if and only if:

( ) ∣ ∣
( )


 

= Ï =
=

P P x I I

P P P

i for all or 1 and,

ii , for all .
x I I

x I I x I

5
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In the above definition, the requirement =P Px I I x , for allPI, is quite natural. This requirement ensures that
one cannot gain any information about item iwhen querying the oracle using a state with no support on i, i.e. a
state s such that =P s sI where Ïi I . In an arbitrary theory, itmay not be the case that a transformation
satisfying definition 2 and acting non-trivially onPI, with Îx I , exists. This is not an issue as in such theories we
cannot even define the search problem, let alone show it can be solved using fewer queries than quantum theory.
In this work, we shall assume the existence of a search oracle in any theorywe consider. Given the definition of
coherence-projectors wI we can equivalently write definition 2 as: w w=x I I , for Ïx I or ∣ ∣ =I 1, and
 w w=x I I x , for all I. Indeed, in the quantum case, the action of the oracle can be equivalently described as:

∣ ∣ w w= Î =x I Iif or 1x I I , and w w= - otherwisex I I .

We can now formally state the search problem for a singlemarked item—defined for the quantum case in
[7, 22, 34]—as:

Search problem.Given anN element list with search oraclex and an arbitrary collection of reversible
transformations { }Gi , what is theminimal Îk such that  -G G G s...k x k x1 1 can be found, with probability
greater than 1/2, to be in the state x, for arbitrary state s, averaged over all possiblemarked items?

4.Main result

Theorem1. In theories satisfying principles 1–5, with finitemaximal order of interference h, the number of queries
needed to solve the search problem is ( )W N h .

Proof.Proof of theorem1. The basic idea is based on the proof of the quantum case presented in [7, 22, 34]. Let

 =
=

-

-

s G G G s

s G G G s

... ,

... ,
k
x

k x k x

k k k

1 1

1 1

whereGi is some reversible transformation from the theory, and define

 å= -D s s .k
x

k
x

k
2

It will be shown that, for á ñx s, 1 2k
x , we have  cN D hk4k

2, where c is any constant less than ( )-2 1 2,

fromwhich the result ( )k O N

h
follows. The lower bound goes through as in the quantum case and is

derived in appendix A.4. The upper boundwill nowbe proved by induction.
We have

( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

   

 

 

  

 

   

 

 

 

 



 









å å

å

å

å

å

å
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= - = -

= - + -

-
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⎛
⎝
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⎞
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s s s
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D s
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,
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x
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x
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x
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x
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x
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x
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x
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x
k x k

x
x k

k k
x

x k x k

k
x

x k

1 1
2 2

2

2

2

2 2

2

2

which follows from the triangle inequality, the Cauchy–Schwarz inequality, and the fact the norm is invariant
under reversible transformations.

The quantity ( )å - sx x k
2—which can be thought of as howmuch some state is ‘moved’ in a single

query, averaged over all possiblemarked items x—is the only theory dependent quantity that features in this
proof.We upper bound it as follows:

6
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( )

( )
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( )
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where thefirst line follows from lemmas 1 and 2, and the definition of the search oraclex , and second from the
triangle inequality and the fact that the norm is invariant under reversible transformations.We need to know
howmany times each w sI k

2 appears whenwe sumover themarked item x. Each given { }=I i i i, ,..., I1 2 will
appear ∣ ∣I times aswe sumover x, one for every time ij is themarked item. Thus

( ) ∣ ∣

∣ ∣
∣ ∣

 

  

å å

å å

w

w w

-

=
>

 s I s

I s h s h s h

4

4 4 4 4 .

x
x k

I
I

I k

I
I k

I
I k k

2

1

2

2 2 2

The second line follows from   wå = s 0I I k1
2 , lemma 2,  s 1k , and ∣ ∣ I h, for all I.We thus have:

( ) ++D D h4 .k k1
2 Assuming that D hk4k

2 gives us ( ) ++D h k4 1 ,k 1
2 fromwhich the result follows

via induction. ,

5.Discussion

In this work, we considered theories satisfying certain natural physical principles which are sufficient for the
existence of controlled transformations and a phase kick-backmechanism, necessary features for awell-defined
search oracle. Given these physical principles, we proved that a theorywithmaximal order of interference h

requires ( )W N h queries to this oracle tofind a singlemarked item from someN-element list. This result
challenges our pre-conceived notions about howquantum computers achieve their computational advantage
and is somewhat surprising as onemight expectmore interference to implymore computational power. Further
workwill focus on determining sufficient physical principles for there to exist an algorithm that achieves the
quadratic lower bound derived here.

Recent work has also investigatedGroverʼs algorithm from the point of view of post-quantum theories [1, 2].
Theseworks consideredmodifications of quantum theorywhich allow for superluminal signalling and cloning
of states. In contrast, the generalised probabilistic theory framework employed here allowed us to investigate
Groverʼs lower bound in alternate theories that are physically reasonable andwhich, for example, do not allow
for superluminal signalling [4] or cloning [35].

As theories satisfying our five physical principles appear ‘quantum-like’—at least from the point of view of
the search problem—investigating interference behaviour in themmay inform current experiments searching
for post-quantum interference.
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Appendix. Results for coherences

A.1. Proof of lemma1
In a theorywithmaximal order of interference h one has

( ∣ ∣ )

∣ ∣





å=
Í

 h I N P, , .N
I

I h

I
N

Thus, showing w= å =N I
h

I1 reduces to showing

( ∣ ∣ )
∣ ∣

∣ ∣





å åw =
= Í

h I N P, , .
I

h

I
I

I h

I
N1

As ≔ ( )˜
˜

˜w å -Í
+ P1I I I

I I
I , we just have to count the number ofPIʼs that appear as we sumover ∣ ∣I . For some

fixed I, this is just

( ) ∣ ∣
∣ ∣∣ ∣

∣ ∣å a
-

-
-a

a

=

-
⎛
⎝⎜

⎞
⎠⎟

N I

I
1 .

I

h
I

By expanding and rearranging this, one can straightforwardly (if tediously) show that this equals ( ∣ ∣ ) h I N, , ,
andwe are done.

A.2. Proof of lemma2 part (i)
From the definition of wI , it follows that

( ) ( )

( ) ( )

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣













åå

å

w w = - -

= - ~

Ç

+

Í Í

+

+

Í
~

~

P P

I J K P

1 1

1 , , ,

I J
I J

I I J J

I J
I J

I J

K I J
K

where ( )
~

I J K, , is the number of distinct pairings of I and J such that  Ç = ~
I J K and ∣ ∣ ∣ ∣ +I J is even,

minus the number of distinct pairings where  Ç = ~
I J K and ∣ ∣ ∣ ∣ +I J is odd. It will nowbe shown that

( )
( )∣ ∣ ∣ ∣

 =
¹

- =
~

+
~

⎧⎨⎩I J K
I J

I J
, ,

0 if ,

1 if .I K

For the ¹I J casefix some particular Îi I such that Îi J and consider some  Í ÍI I J J, such that
 Ç = ~
I J K . If Ïx I alter I by adding i, otherwise alter I by removing x. This procedure turns each even
∣ ∣ ∣ ∣ +I J , odd.We have thus shown that for each  ÍI I and  ÍJ J such that  Ç = ~

I J K and ∣ ∣ ∣ ∣ +I J is even,
there exists an ¢ ÍI I such that  Ç¢ = ~

I J K and ∣ ∣ ∣ ∣ ¢ +I J is odd, and vice versa. Thus the number of distinct
pairings of I and J such that  Ç = ~

I J K and ∣ ∣ ∣ ∣ +I J is even is equal to the number of distinct pairings of I
and J such that  Ç = ~

I J K and ∣ ∣ ∣ ∣ +I J is odd, and so ( ) =~
I J K, , 0 when ¹I J .

For the I=J case we canmake a similar argument by picking some Î Îi I i J, except for when
 = =J J I . This case gives an excess±1 depending onwhether ∣ ∣ ∣ ∣+ ~

J K is odd or even, implying

( ) ( ) = -~ + ~
I J K, , 1 I K when I=J.
This immediately gives w w = 0I J if ¹I J and

( ) ( )∣ ∣ ∣ ∣ ∣ ∣åw w w= - - =
Í

+
~

~
~P1 1 ,I I

I

K I

I K
K I

2

if I=J.

A.3. Proof of lemma2 part (ii)
Toprove the lemma,we need the fact that the wIʼs are self-dual †w w=I I , where the † is defined by the the self-
dualising inner-product as: · · · ·†w wá ñ = á ñ, ,I I . Recalling that the wIʼs correspond to linear combinations of
thePIʼs, this follows immediately from self-duality of the projectors PI, which is proved in [3] (Recall that our
principles 1–5 imply thefirst two axioms of [3].).We nowhave
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å å
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where the last equality follows from the orthogonality of the wIʼs. Finally

  å å åw w w w= á ñ = á ñ =s s s s s s, , .
I

I
I

I I
I

I
2 2

A.4. Proof of D cNk

Weassume that á ñx s, 1 2k
x for all x, so ameasurement of sk

x yields a solution to the search problemwith
probability at least 1/2. Let  = å -E s xk x k

x 2 and  = å -F s xk x k
2. It follows that

( ) ( ) ( )

( ) ( ) 

 

 

å å

å å

= - á ñ -

- á ñ -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

E x s N

F N s x y N N

i 2 1 , 2 1 1 2 and,

ii 2 , 2 ,

k
x

k
x

x

k k
x y

where (ii) follows from theCauchy–Schwarz inequality,  s 1k and dá ñ =x y, xy. As explicitly calculated on
page 270 of [22], by using the reverse triangle inequality and theCauchy–Schwarz inequality, it follows that

( ) -D F Ek k k
2. Combing this with the upper bound onEk and the lower bound on Fk, we have that

D cN ,k for sufficiently largeN, where c is any constant less than ( )- »2 1 0.172 .
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