54 research outputs found

    Drug inhibition of redox factor-1 restores hypoxia-driven changes in tuberous sclerosis complex 2 deficient cells

    Get PDF
    Simple Summary: Tuberous sclerosis complex (TSC) is a genetic disease where patients are predisposed to tumors and neurological complications. Current therapies for this disease are not fully curative. We aimed to explore novel drug targets and therapies that could further benefit TSC patients. This work uncovered a novel pathway that drives disease in TSC cell models involving redox factor-1 (Ref-1). Ref-1 is a protein that turns on several key transcription factors that collectively promote tumor growth and survival through direct redox signaling. Processes regulated by Ref-1 include angiogenesis, inflammation, and metabolic transformation. Therefore, this work reveals a new drug target, where inhibitors of Ref-1 could have an additional benefit compared to current drug therapies. Abstract: Therapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone

    Drug inhibition of redox factor-1 restores hypoxic-driven changes in Tuberous Sclerosis Complex 2-deficient cells

    Get PDF
    Therapies with mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for Tuberous Sclerosis Complex (TSC) patients. Here we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses redox signaling activity that stimulates the transcriptional activity of STAT3, NF-B, and HIF-1 involved in inflammation, proliferation, angiogenesis and hypoxia, respectively. Here we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor, APX3330, was effective at blocking the hyperactivity of STAT3, NF-B, and HIF-1. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors, such as STAT3, NF-B and HIF-1, as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits to just using mTORC1 inhibitors alone

    Loss of tuberous sclerosis complex 2 sensitizes tumors to nelfinavir−bortezomib therapy to intensify endoplasmic reticulum stress-induced cell death

    Get PDF
    Cancer cells lose homeostatic flexibility because of mutations and dysregulated signaling pathways involved in maintaining homeostasis. Tuberous Sclerosis Complex 1 (TSC1) and TSC2 play a fundamental role in cell homeostasis, where signal transduction through TSC1/TSC2 is often compromised in cancer, leading to aberrant activation of mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 hyperactivation increases the basal level of endoplasmic reticulum (ER) stress via an accumulation of unfolded protein, due to heightened de novo protein translation and repression of autophagy. We exploit this intrinsic vulnerability of tumor cells lacking TSC2, by treating with nelvinavir to further enhance ER stress while inhibiting the proteasome with bortezomib to prevent effective protein removal. We show that TSC2-deficient cells are highly dependent on the proteosomal degradation pathway for survival. Combined treatment with nelfinavir and bortezomib at clinically relevant drug concentrations show synergy in selectively killing TSC2-deficient cells with limited toxicity in control cells. This drug combination inhibited tumor formation in xenograft mouse models and patient-derived cell models of TSC and caused tumor spheroid death in 3D culture. Importantly, 3D culture assays differentiated between the cytostatic effects of the mTORC1 inhibitor, rapamycin, and the cytotoxic effects of the nelfinavir/bortezomib combination. Through RNA sequencing, we determined that nelfinavir and bortezomib tip the balance of ER protein homeostasis of the already ER-stressed TSC2-deficient cells in favor of cell death. These findings have clinical relevance in stratified medicine to treat tumors that have compromised signaling through TSC and are inflexible in their capacity to restore ER homeostasis

    Solar radiation stress in climbing snails: behavioural and intrinsic features define the Hsp70 level in natural populations of Xeropicta derbentina (Pulmonata).

    No full text
    International audienceEctotherms from sunny and hot environments need to cope with solar radiation. Mediterranean land snails of the superfamily Helicoidea feature a behavioural strategy to escape from solar radiation-induced excessive soil heating by climbing up vertical objects. The height of climbing, and also other parameters like shell colouration pattern, shell orientation, shell size, body mass, actual internal and shell surface temperature, and the interactions between those factors may be expected to modulate proteotoxic effects in snails exposed to solar radiation and, thus, their stress response. Focussing on natural populations of Xeropicta derbentina, we conducted a 'snapshot' field study using the individual Hsp70 level as a proxy for proteotoxic stress. In addition to correlation analyses, an IT-model selection approach based on Akaike's Information Criterion was applied to evaluate a set of models with respect to their explanatory power and to assess the relevance of each of the above-mentioned parameters for individual stress, by model averaging and parameter estimation. The analysis revealed particular importance of the individuals' shell size, height above ground, the shell colouration pattern and the interaction height x orientation. Our study showed that a distinct set of behavioural traits and intrinsic characters define the Hsp70 level and that environmental factors and individual features strongly interact
    • …
    corecore