8,702 research outputs found

    Turing pattern formation in the Brusselator system with nonlinear diffusion

    Full text link
    In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover we consider traveling patterning waves: when the domain size is large, the pattern forms sequentially and traveling wavefronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and through a matching procedure we construct the outer amplitude equation and the inner core solution.Comment: Physical Review E, 201

    Complex singularities and PDEs

    Full text link
    In this paper we give a review on the computational methods used to characterize the complex singularities developed by some relevant PDEs. We begin by reviewing the singularity tracking method based on the analysis of the Fourier spectrum. We then introduce other methods generally used to detect the hidden singularities. In particular we show some applications of the Pad\'e approximation, of the Kida method, and of Borel-Polya method. We apply these techniques to the study of the singularity formation of some nonlinear dispersive and dissipative one dimensional PDE of the 2D Prandtl equation, of the 2D KP equation, and to Navier-Stokes equation for high Reynolds number incompressible flows in the case of interaction with rigid boundaries

    Two relaxation times and thermal nonlinear waves along wires with lateral heat exchange

    Get PDF
    We propose a model for studying several nonlinear waves for heat transport along a cylindrical system with lateral non-linear heat transfer to the environment. We consider relaxational equations, each with its own relaxation time, for longitudinal heat transfer and for lateral heat transfer across the wall. We consider two kinds of nonlinear lateral heat transport: radiative heat transport, and flux-limited heat transport. This work generalizes our previous studies in which the relaxation time for the lateral heat transfer was considered equal to that of the longitudinal heat flux. We explore the influence of both relaxation times on the propagation speed of linear and nonlinear waves, and on the form of nonlinear waves

    Nonlinear Thermal Transport with Inertia in Thin Wires: Thermal Fronts and Steady States

    Get PDF
    In a series of papers we have obtained results for nonlinear heat transport when thin wires exchange heat non-linearly with the surroundings, with particular attention to propagating solitons. Here we obtain and discuss new results related to the propagation of nonlinear heat fronts and some conceptual aspects referring to the application of the second principle of thermodynamics to some nonlinear steady states related to non-propagating solitons

    Bankruptcy

    Get PDF

    Matter-wave dark solitons in boxlike traps

    Get PDF
    Motivated by the experimental development of quasihomogeneous Bose-Einstein condensates confined in boxlike traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterize this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the boxlike trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field

    Comparative electrochemical behavior of Prussian blue analogues as a host electrode for rare earth element recovery

    Get PDF
    In this paper, electrodeposited films belonging to the Prussian Blue Analogues (PBAs) family, namely, nickel-hexacyanoferrate (NiHCF) and copper-hexacyanoferrate (CuHCF), were employed as a host material for rare earth elements (REE), and the reported insertion/release study reveals a recovery capability for such valuable metals. The ion insertion/release was accomplished by adopting an electrochemically-driven process. A reversible intercalation was observed while considering both heavy and ligth rare earth elements. The amount of REEs inserted/released over the process and its kinetic evolution during the process were also studied by a chemometric approach. For CuHCF, it was seen that the intercalation of heavy rare earth elements occurs easily respect to the light ones, suggesting a possible selectivity among these ions

    Vortex density waves and high-frequency second sound in superfluid turbulence hydrodynamics

    Full text link
    In this paper we show that a recent hydrodynamical model of superfluid turbulence describes vortex density waves and their effects on the speed of high-frequency second sound. In this frequency regime, the vortex dynamics is not purely diffusive, as for low frequencies, but exhibits ondulatory features, whose influence on the second sound is here explored.Comment: 8 page

    Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions

    Full text link
    Numerical solutions of the laminar Prandtl boundary-layer and Navier-Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions that can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective

    Transcranial Direct Current Stimulatio (tDCS) and Transcranial Current Alterning Stimulation (tACS) Review

    Get PDF
    [Abstract] This literature review is aimed to explore the main technical characteristics of both transcranial direct current stimulation (tDCS) and transcranial alternate current stimulation (tACS) using the latest research on both healthy and impaired subjects. These techniques have no official standards developed yet. Our intent is to underline the main properties and problems linked with the application of those techniques which show diverse, and sometimes even opposite, results depending mainly on electrode positioning and underlying brain activity.This research has been carried out in the framework of the project Associate - Decoding and stimulation of motor and sensory brain activity to support long term potentiation through Hebbian and paired associative stimulation during rehabilitation of gait (DPI2014-58431-C4-2-R), funded by the Spanish Ministry of Economy and Competitiveness and by the European Union through the European Regional Development Fund (ERDF) A way to build Europehttps://doi.org/10.17979/spudc.978849749808
    • …
    corecore