185 research outputs found

    The Regulation of nNOS During Neuronal Differentiation and the Effect of Nitric Oxide on Hdm2-p53 Binding: a Dissertation

    Get PDF
    Nitric oxide is a ubiquitous signaling molecule with both physiological and pathological functions in biological systems. Formed by the enzymatic conversion of arginine to citrulline, NO, has known roles in circulatory, immune and nervous tissues. In the nervous system nitric oxide has been implicated in long-term potentiation, neurotransmitter release, channel function, neuronal protection and neuronal degeneration. Much of our work has focused on yet another role for nitric oxide in cells, namely, neuronal differentiation. During development, neuronal differentiation is closely coupled with cessation of proliferation. We use nerve growth factor (NGF)-induced differentiation of PC12 pheochromocytoma cells as a model and find a novel signal transduction pathway that blocks cell proliferation. Treatment of PC12 cells with NGF leads to induction of nitric oxide synthase (NOS). The resulting nitric oxide (NO) acts as a second messenger, activating the p21(WAF1) promoter and inducing expression of p21(WAF1) cyclin-dependent kinase inhibitor. NO activates the p21(WAF1) promoter by p53-dependent and p53-independent mechanisms. Blocking production of NO with an inhibitor of NOS reduces accumulation of p53, activation of the p21(WAF1) promoter, expression of neuronal markers, and neurite extension. To deternine whether p21(WAF1) is required for neurite extension, we prepared a PC12 line with an inducible p21(WAF1) expression vector. Blocking NOS with an inhibitor decreases neurite extension, but induction of p21(WAF1) with isopropyl-1-thio-beta-D-galactopyranoside restored this response. Levels of p21(WAF1) induced by isopropyl-1-thio-beta-D-galactopyranoside were similar to those induced by NGF. Therefore, we have identified a signal transduction pathway that is activated by NGF; proceeds through NOS, p53 and p21(WAF1) to block cell proliferation; and is required for neuronal differentiation by PC12 cells. In further studies of this pathway, we have examined the role of MAP kinase pathways in neuronal nitric oxide synthase (nNOS) induction during the differentiation of PC12 cells. In NGF-treated PC12 cells, we find that nNOS is induced at RNA and protein levels, resulting in increased NOS activity. We note that neither nNOS mRNA, nNOS protein nor NOS activity is induced by NGF treatment in cells that have been infected with a dominant negative Ras adenovirus. We have also used drugs that block MAP kinase pathways and assessed their ability to inhibit nNOS induction. Even though U0126 and PD98059 are both MEK inhibitors, we find that U0126, but not PD98059, blocks nNOS induction and NOS activity in NGF-treated PC12 cells. Also, the p38 kinase inhibitor, SB 203580, does not block nNOS induction in our clone of PC12 cells. Since the JNK pathway is not activated in NGF-treated PC12 cells, we determine that the Ras-ERK pathway and not the p38 or JNK pathway is required for nNOS induction in NGF-treated PC12 cells. We find that U0l26 is much more effective than PD98059 in blocking the Ras-ERK pathway, thereby explaining the discrepancy in nNOS inhibition. We conclude that the Ras-ERK pathway is required for nNOS induction. The activation of soluble guanylate cyclase and the production of cyclic GMP is one of the best characterized modes of NO action. Having shown that inhibition of NOS blocks PC12 cell differentiation we tested whether nitric oxide acts through soluble guanylate cyclase to lead to cell cycle arrest and neuronal differentiation. Unlike NOS inhibition, the inhibition of soluble guanylate cylcase does not block the induction of neuronal markers. Moreover, treatment of NGF-treated, NOS-inhibited PC12 cells with a soluble analog of cyclic GMP was unable to restore differentiation of those cells. Hence, cGMP is not a component of this pathway and we had to consider other mechanisms of NO action. It has become increasingly evident that another manner by which NO may exert its effects is by S-nitrosylation of cysteine residues. We tested, in vitro whether nitric oxide may control p53 by S-nitrosylation and inactivation of the p53 negative regulator, Hdm2. Treatment of Hdm2 with a nitric oxide donor inhibits Hdm2-p53 binding, the first step in Hdm2 regulation of p53. The presence of cysteine or DTT blocks this inhibition of binding. Moreover, nitric oxide inhibition of Hdm2-p53 binding was found to be reversible. Sulfhydryl-sensitivity and reversibility are consistent with nitrosylation. Finally, we have identified a critical cysteine residue that nitric oxide modifies in order to disrupt Hdm2-p53 binding. Mutation of this residue from a cysteine to an alanine does not interfere with binding but rather eliminates the sensitivity of Hdm2 to nitric oxide inactivation

    Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly

    Get PDF
    Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 lm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability

    Commentary: mechanistic considerations for associations between formaldehyde exposure and nasopharyngeal carcinoma

    Get PDF
    Occupational exposure to formaldehyde has been linked to nasopharyngeal carcinoma. To date, mechanistic explanations for this association have primarily focused on formaldehyde-induced cytotoxicity, regenerative hyperplasia and DNA damage. However, recent studies broaden the potential mechanisms as it is now well established that formaldehyde dehydrogenase, identical to S-nitrosoglutathione reductase, is an important mediator of cGMP-independent nitric oxide signaling pathways. We have previously described mechanisms by which formaldehyde can influence nitrosothiol homeostasis thereby leading to changes in pulmonary physiology. Considering evidences that nitrosothiols govern the Epstein-Barr virus infection cycle, and that the virus is strongly implicated in the etiology of nasopharyngeal carcinoma, studies are needed to examine the potential for formaldehyde to reactivate the Epstein-Barr virus as well as additively or synergistically interact with the virus to potentiate epithelial cell transformation

    Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity

    Get PDF
    Aims/hypothesis. Obese people exhibit reduced circulating peptide YY (PYY) levels, but it is unclear whether this is a consequence or cause of obesity. We therefore investigated the effect of Pyy ablation on energy homeostasis. Methods. Body composition, i.p. glucose tolerance, food intake and hypothalamic neuropeptide expression were determined in Pyy knock-out and wild-type mice on a normal or high-fat diet. Results. Pyy knock-out significantly increased bodyweight and increased fat mass by 50% in aged females on a normal diet. Male chow-fed Pyy −/− mice were resistant to obesity but became significantly fatter and glucose-intolerant compared with wild-types when fed a high-fat diet. Pyy knock-out animals exhibited significantly elevated fasting or glucose-stimulated serum insulin concentrations vs wild-types, with no increase in basal or fasting-induced food intake. Pyy knock-out decreased or had no effect on neuropeptide Y expression in the arcuate nucleus of the hypothalamus, and significantly increased proopiomelanocortin expression in this region. Male but not female knock-outs exhibited significantly increased growth hormone-releasing hormone expression in the ventromedial hypothalamus and significantly elevated serum IGF-I and testosterone levels. This sex difference in activation of the hypothalamo–pituitary somatotrophic axis by Pyy ablation may contribute to the resistance of chow-fed male knock-outs to late-onset obesity. Conclusions/interpretation. PYY signalling is important in the regulation of energy balance and glucose homeostasis, possibly via regulation of insulin release. Therefore reduced PYY levels may predispose to the development of obesity, particularly with ageing or under conditions of high-fat feeding

    Quantifying and controlling the cation uptake upon hydrated ionic liquid-induced swelling of polyelectrolyte multilayers

    No full text
    Controlling the uptake of specific ions in polyelectrolyte multilayers is of interest for various fields of application. Here, we quantify the amount of cation of an ionic liquid, namely 1,3-bis(cyanomethyl) imidazolium chloride, incorporated into polyelectrolyte multilayers upon contact with an ionic liquid solution. The ion partition equilibrium is determined depending on concentration in solution, employing attenuated total reflection infrared spectroscopy. Generating an excess charge in multilayers by post-preparative manipulation of their charge balance, one can control the incorporated amount. Three multilayer systems are assembled for this purpose, i.e., PSS/PDADMAC, PSS/PAH and PAA/PDADMAC, employing poly(styrene sulfonate) (PSS), poly(diallyldimethylammonium chloride) (PDADMAC), poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). The charge balance of the latter two films is manipulated by an external pH stimulus generating an excess positive or negative internal charge, respectively. The concentration of cations in PEM amounts to 30% to 100% of the bulk concentration and scales as PAA/PDADMAC > PSS/PDADMAC > PSS/PAH. Thus, post-preparative pH treatment may be a future tool to create ion-conductive polymer gel films with a desired concentration of small cations

    Measurement of protein S-nitrosylation during cell signaling

    No full text
    S-Nitrosylation, the modification of a cysteine thiol by a nitric oxide (NO) group, has emerged as an important posttranslational modification of signaling proteins. An impediment to studying the regulation of cell signaling by S-nitrosylation has been the technical challenge of detecting endogenously S-nitrosylated proteins. Detection of S-nitrosylated proteins is difficult because the S-NO bond is labile and therefore can be lost or gained artifactually during sample preparation. Nevertheless, several methods have been developed to measure endogenous protein S-nitrosylation, including the biotin switch assay and the chemical reduction/chemiluminescence assay. This chapter describes these two methods and provides examples of how they have been used successfully to elucidate the role of protein S-nitrosylation in cell physiology and pathophysiology

    Die Stabilität der Tibiaplateau Metall-Zementverbindung

    No full text
    • …
    corecore