44 research outputs found
Minimal residual disease (MRD) detection with translocations and T-cell receptor and immunoglobulin gene rearrangements in adult acute lymphoblastic leukemia patients: a pilot study
Objective: Monitoring minimal residual disease has become increasingly important in clinical practice of ALL management. Break-point fusion regions of leukaemia related chromosomal aberrations and rearranged immunoglobulin (Ig) and T cell-receptor (TCR) genes are used as leukaemia specific markers in genetic studies of MRD.Material and Methods: A total of 31 consecutive patients with newly diagnosed ALL were screened for eligibility criteria. Of those 26 were included in the study. One patient with partial response following induction therapy and four patients who were lost to follow-up after induction were excluded from the study; thus 21 patients were evaluated for MRD by using polymerase chain reaction (PCR), heteroduplex analysis, sequencing and quantitative real time PCR techniques. Results: Chromosomal aberrations were detected in 5 (24%) of the patients and were used for MRD monitoring. Three patients had t(9;22) translocation, the other 2 had t(4;11) and t(1;19). MRD-based risk stratification of the16 patients analysed for Ig/TCR rearrangements revealed 3 low-risk, 11 intermediate-risk and 2 high-risk patients.Conclusion: MRD monitoring is progressively getting to be a more important predictive factor in adult ALL patients. As reported by others confirmed by our limited data there is a good correlation between MRD status and clinical outcome in patients receiving chemotherapy. The pilot-study presented here is the first that systematically and consecutively performs a molecular MRD monitoring of ALL patients in Turkey
No contribution of GSTM1 and GSTT1 null genotypes to the risk of neutropenia due to benzene exposure in Southeastern Brazil
Exposure to benzene has been associated with haematological diseases such as neutropenia (NEB) and acute myeloid leukaemia (AML). We tested whether the null genotypes of the GSTM1 and GSTT1 genes, involved in benzene inactivation, altered the risk for NEB in southeastern Brazil. Genomic DNA from 55 NEB patients and 330 controls was analysed by multiplex-polymerase chain reaction. The frequency of the GSTM1, GSTT1 and combined null genotypes was similar in patients and controls (GSTM1, 27.3% vs. 38.8%, p = 0.16; GSTT1, 25.5% vs. 19.7%, p = 0.24; GSTM1/GSTT1, 12.7% vs. 6.7%, p = 0.26; respectively). The distribution of genotype classes in NEB patients was similar to normal controls, suggesting that GSTM1 and GSTT1 null genotypes make no specific contribution to the risk of NEB. As the GSTM1 and GSTT1 null genotypes were previously associated with increased risk for AML in Brazil and elsewhere, we hypothesise that different thresholds of chemical exposure relative to distinct GSTM1 and GSTT1 genotypes may determine whether AML or NEB manifests in benzene exposed individuals from southeastern Brazil. Although indicative, our results still require support by prospective and large scale epidemiological studies, with rigorous assessment of daily chemical exposures and control of the possible contribution of other polymorphic genes involved in benzene metabolism
GSTT1 and GSTM1 null variants in Mestizo and Amerindian populations from northwestern Mexico and a literature review
Elevated TRIB2 with NOTCH1 activation in paediatric/adult T-ALL
TRIB2 is a potent oncogene, elevated in a subset of human acute myeloid leukaemias (AML) with a mixed myeloid/lymphoid phenotype and NOTCH1 mutations. Although rare in AML, activating NOTCH1 mutations occur in 50% of all T cell acute lymphoblastic leukaemias (T-ALL). TRIB2 is a NOTCH1 target gene that functions in the degradation of key proteins and modulation of MAPK signalling pathways, implicated in haematopoietic cell survival and proliferation. This study showed that TRIB2 expression level is highest in the lymphoid compartment of normal haematopoietic cells, specifically in T cells. Analysis of TRIB2 expression across 16 different subtypes of human leukaemia demonstrated that TRIB2 expression was higher in ALL phenotypes versus all other phenotypes including AML, chronic lymphocytic leukaemia (CLL), myelodysplastic syndrome (MDS) and chronic myeloid leukaemia (CML). A T cell profile was distinguished by high TRIB2 expression in normal and malignant haematopoiesis. High TRIB2 expression was seen in T-ALL with normal karyotype and correlated with NOTCH signalling pathways. High TRIB2 expression correlated with NOTCH1/FBXW7 mutations in a paediatric T-ALL cohort, strongly linking NOTCH1 activation and high TRIB2 expression in paediatric T-ALL. The relationship between TRIB2 and T cell signalling pathways uniquely identifies leukaemia subtypes and will be useful in the advancement of our understanding of T cell and ALL biology
