749 research outputs found

    Uncultured Gammaproteobacteria and Desulfobacteraceae Account for Major Acetate Assimilation in a Coastal Marine Sediment

    Get PDF
    Acetate is a key intermediate in anaerobic mineralization of organic matter in marine sediments. Its turnover is central to carbon cycling, however, the relative contribution of different microbial populations to acetate assimilation in marine sediments is unknown. To quantify acetate assimilation by in situ abundant bacterial populations, we incubated coastal marine sediments with C-14-labeled acetate and flow-sorted cells that had been labeled and identified by fluorescence in situ hybridization. Subsequently, scintillography determined the amount of C-14-acetate assimilated by distinct populations. This approach fostered a high-throughput quantification of acetate assimilation by phylogenetically identified populations. Acetate uptake was highest in the oxic-suboxic surface layer for all sorted bacterial populations, including deltaproteobacterial sulfate-reducing bacteria (SRB), which accounted for up to 32% of total bacterial acetate assimilation. We show that the family Desulfobulbaceae also assimilates acetate in marine sediments, while the more abundant Desulfobacteraceae dominated acetate assimilation despite lower uptake rates. Unexpectedly, members of Gammaproteobacteria accounted for the highest relative acetate assimilation in all sediment layers with up to 31-62% of total bacterial acetate uptake. We also show that acetate is used to build up storage compounds such as polyalkanoates. Together, our findings demonstrate that not only the usual suspects SRB but a diverse bacterial community may substantially contribute to acetate assimilation in marine sediments. This study highlights the importance of quantitative approaches to reveal the roles of distinct microbial populations in acetate turnover

    Interrupted orthodontic force results in less root resorption than continuous force in human premolars as measured by microcomputed tomography

    Get PDF
    Introduction. Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. Material and methods. The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. Results. The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p < 0.05). However, the distance of tooth displacement was similar for both groups. Cementoclasts were detected with the TRAP technique on the surface of two teeth only; both were subjected to continuous force. Conclusions. The use of IF leads to less destruction of root structure as opposed to continuous force while the same tooth movement was achieved

    R-loop formation and conformational activation mechanisms of Cas9

    Full text link
    Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage13^{1-3}. The programmable activity of Cas9 has been widely utilized for genome editing applications46^{4-6}, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity

    Magnetic Moment of the Fragmentation Aligned 61Fe(9/2)+ Isomer

    Full text link
    We report on the g factor measurement of the isomer in 61Fe^{61}Fe (E=861keVE^{*}=861 keV). The isomer was produced and spin-aligned via a projectile-fragmentation reaction at intermediate energy, the Time Dependent Perturbed Angular Distribution (TDPAD) method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the isomer has been observed, allowing a precise determination of its g factor: g=0.229(2)g=-0.229(2). Comparison of the experimental g factor with shell-model and mean field calculations confirms the 9/2+9/2^+ spin and parity assignments and suggests the onset of deformation due to the intrusion of Nilsson orbitals emerging from the νg9/2\nu g_{9/2}.Comment: 4 figures. Submitted to Phys. Rev. Let

    Shape Isomerism at N = 40: Discovery of a Proton Intruder in 67Co

    Full text link
    The nuclear structure of 67Co has been investigated through 67Fe beta-decay. The 67Fe isotopes were produced at the LISOL facility in proton-induced fission of 238U and selected using resonant laser ionization combined with mass separation. The application of a new correlation technique unambiguously revealed a 496(33) ms isomeric state in 67Co at an unexpected low energy of 492 keV. A 67Co level scheme has been deduced. Proposed spin and parities suggest a spherical (7/2-) 67Co ground state and a deformed first excited (1/2-) state at 492 keV, interpreted as a proton 1p-2h prolate intruder state.Comment: 4 pages, 5 figures, preprint submitted to Physical Review Letter

    Transcription activation depends on the length of the RNA polymerase II C‐terminal domain

    Get PDF
    Eukaryotic RNA polymerase II (Pol II) contains a tail‐like, intrinsically disordered carboxy‐terminal domain (CTD) comprised of heptad‐repeats, that functions in coordination of the transcription cycle and in coupling transcription to co‐transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre‐mRNA synthesis or processing in cells. However, CTD shortening decreases the duration of promoter‐proximal Pol II pausing, alters transcription of putative enhancer elements, and delays transcription activation after stimulation of the MAP kinase pathway. We suggest that a long CTD is required for efficient enhancer‐dependent recruitment of Pol II to target genes for their rapid activation

    Termowizja jako metoda diagnostyczna stosowana w kardiologii

    Get PDF
    Thermography is a diagnostic method which is totally non-invasive, painless and safe for both a patient and a diagnostician. It enables to define the physiological condition of the examined tissues or organs basing on the emission of the infrared radiation. Thermography examination has its application in almost every branch of medicine. For a few years in cardiology, there has been an intensive research on introducing the new methods of identifying the high risk atherosclerotic plaques which is largely based on evaluating the degree of escalation of the inflammation process within the atherosclerotic changes. Thanks to applying thermography within the vessels, it is possible to measure the temperature of the wall of the vessel in order to detect the high risk atherosclerotic plaques and evaluate the potential risk of occurrence of the acute coronary syndrome. Kardiol Pol 2010; 68, 9: 1052-105
    corecore