11 research outputs found

    Antioxidant role of oleuropein on midbrain and dopaminergic neurons of substantia Nigra in aged rats

    Get PDF
    Background: Oleuropein is a phenolic compound which is present in the olive leaf extract. The purpose of the present study was to investigate the neuroprotective effect of oleuropein as an antioxidant agent on the substantia nigra in aged rats. Methods: Twenty 18-month-old Wistar rats (450-550 g) were randomly divided into control and experimental groups. The experimental group received a daily single dose of 50 mg/kg of oleuropein by oral gavage for 6 months. The control group received only distilled water. All rats were sacrificed two hours after the last gavage and the brains were removed and midbrains were cut. One part of the midbrains were homogenized and centrifuged. The tissue supernatant was assayed for lipid peroxidation (LPO) and antioxidant enzyme activities. The other part of midbrains fixed and embedded in paraffin, then processed for Nissl and immunohistochemistry (IHC) staining. Data was analyzed using SPSS by t-test. Differences were considered significant for P<0.05. Results: The level of LPO in midbrain of the rats was decreased significantly in the experimental group, but superoxide dismutase, catalase and glutathione peroxidase activities were increased in experimental group compared to control group (P<0.05). Morphometric analyses showed significantly that the experimental group had more neurons in substantia nigra pars compacta (SNc) either in Nissl or IHC staining when compared to control (P<0.05). Conclusion: The results of the present study indicate that treatment of the old rats with oleuropein reduces the oxidative damage in SNc by increasing the antioxidant enzyme activities

    Evaluation of the neuroprotective effects of electromagnetic fields and coenzyme Q 10 on hippocampal injury in mouse

    Get PDF
    Electromagnetic fields (EMFs) are reported to interfere with chemical reactions involving free radical production. Coenzyme Q 10 (CoQ10) is a strong antioxidant with some neuroprotective activities. The purpose of this study was to examine and compare the neuroprotective effects of EMF and CoQ10 in a mouse model of hippocampal injury. Hippocampal injury was induced in mature female mice (25–30 g), using an intraperitoneal injection of trimethyltin hydroxide (TMT; 2.5 mg/kg). The experimental groups were exposed to EMF at a frequency of 50 Hz and intensity of 5.9 mT for 7 hr daily over 1 week or treated with CoQ10 (10 mg/kg) for 2 weeks following TMT injection. A Morris water maze apparatus was used to assess learning and spatial memory. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests were also performed for the histopathological analysis of the hippocampus. Antiapoptotic genes were studied, using the Western blot technique. The water maze test showed memory improvement following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Nissl staining and TUNEL tests indicated a decline in necrotic and apoptotic cell count following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Western blot study indicated the upregulation of antiapoptotic genes in treatment with CoQ10, as well as coadministration. Also, treatment with EMF had no significant effects on reducing damage induced by TMT in the hippocampus. According to the results, EMF had no significant neuroprotective effects in comparison with CoQ10 on hippocampal injury in mice. Nevertheless, coadministration of EMF and CoQ10 could improve the neuroprotective effects of CoQ1

    Long-term administration of metformin ameliorates age-dependent oxidative stress and cognitive function in rats

    No full text
    Background: Aging is an inevitable physiological process, associated with a decline in cognitive function. Recently, metformin, as the first-line treatment for type II diabetes, has been shown to increase the life expectancy of diabetic patients. Therefore, researchers are paying increasing attention to its anti-aging properties. Oxygen free radicals are responsible for oxidative stress, which is a prominent factor in age-associated diseases. This study aimed to evaluate the effects of long-term administration of metformin on age-dependent oxidative stress and cognitive function. Methods: In this experimental study, 32 normal (nondiabetic) male Wistar rats were randomly assigned into control and metformin groups (n = 16 per group). The metformin group received 100 mg/kg of metformin in drinking water daily for six months. The shuttle box test was used for the passive avoidance task in 24-month-old rats. For the biochemical assay, the total antioxidant capacity (TAC) and malondialdehyde (MDA) level were measured. Nissl and TUNEL staining were also used for histopathological assessments. Data were analyzed using independent t-test. Results: The present findings revealed that metformin significantly reduced the MDA level and increased the TAC in the hippocampus of the metformin group (p < 0.05). The survival of hippocampal CA1 neurons was significantly higher in the metformin group as compared to the control group, while the number of TUNEL-positive neurons decreased significantly (p < 0.05). On the other hand, metformin markedly improved the passive avoidance memory in the metformin group as compared to the control group (p < 0.05). Conclusion: It can be concluded that long-term metformin intake, by modulating the oxidant/antioxidant mechanisms, prevents the loss of hippocampal neurons caused by age-dependent oxidative stress and improves memory. © 202

    In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic-like neurons

    Get PDF
    This study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain-death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell-derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l-amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co-positive cells (microtubule-associated protein 2 and tyrosine hydroxylase; aromatic l-amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell-based therapeutic strategy for Parkinson's disease

    Evaluation of the neuroprotective effects of electromagnetic fields and coenzyme Q 10 on hippocampal injury in mouse

    No full text
    Electromagnetic fields (EMFs) are reported to interfere with chemical reactions involving free radical production. Coenzyme Q 10 (CoQ10) is a strong antioxidant with some neuroprotective activities. The purpose of this study was to examine and compare the neuroprotective effects of EMF and CoQ10 in a mouse model of hippocampal injury. Hippocampal injury was induced in mature female mice (25�30 g), using an intraperitoneal injection of trimethyltin hydroxide (TMT; 2.5 mg/kg). The experimental groups were exposed to EMF at a frequency of 50 Hz and intensity of 5.9 mT for 7 hr daily over 1 week or treated with CoQ10 (10 mg/kg) for 2 weeks following TMT injection. A Morris water maze apparatus was used to assess learning and spatial memory. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) tests were also performed for the histopathological analysis of the hippocampus. Antiapoptotic genes were studied, using the Western blot technique. The water maze test showed memory improvement following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Nissl staining and TUNEL tests indicated a decline in necrotic and apoptotic cell count following treatment with CoQ10 and coadministration of CoQ10 + EMF. The Western blot study indicated the upregulation of antiapoptotic genes in treatment with CoQ10, as well as coadministration. Also, treatment with EMF had no significant effects on reducing damage induced by TMT in the hippocampus. According to the results, EMF had no significant neuroprotective effects in comparison with CoQ10 on hippocampal injury in mice. Nevertheless, coadministration of EMF and CoQ10 could improve the neuroprotective effects of CoQ10. © 2019 Wiley Periodicals, Inc
    corecore