1,554 research outputs found

    Insight into CO2 dissociation in plasmas from numerical solution of a vibrational diffusion equation

    Get PDF
    The dissociation of CO2 molecules in plasmas is a subject of enormous importance for fundamental studies and the recent interest in carbon capture and carbon-neutral fuels. The vibrational excitation of the CO2 molecule plays an important role in the process. The complexity of the present state-to-state (STS) models makes it difficult to find out the key parameters. In this paper we propose as an alternative a numerical method based on the diffusion formalism developed in the past for analytical studies. The non-linear Fokker-Planck equation is solved by the time-dependent diffusion Monte Carlo method. Transport quantities are calculated from STS rate coefficients. The asymmetric stretching mode of CO2 is used as a test case. We show that the method reproduces the STS results or a Treanor distribution depending on the choice of the boundary conditions. A positive drift, whose energy onset is determined by the vibrational to translational temperature ratio, brings molecules from mid-energy range to dissociation. The high-energy fall of the distribution is observed even neglecting VT processes which are normally believed to be its cause. Our study explains several puzzling features of previous studies, provides new insights into the control of the dissociation rate and a much sought compression of the required data for modeling

    Technologies for the marketplace from the Centers for Disease Control

    Get PDF
    The Centers for Disease Control, a Public Health Service agency, is responsible for the prevention and control of disease and injury. Programs range from surveillance and prevention of chronic and infectious diseases to occupational health and injury control. These programs have produced technologies in a variety of fields, including vaccine development, new methods of disease diagnosis, and new tools to ensure a safer work environment

    Recent trends in renewable energy driven chemistry for energy conversionand storage: plasma chemistry as the special case

    Get PDF

    Breaking Through the Noise: Literacy Teachers in the Face of Accountability, Evaluation, and Reform

    Get PDF
    In an era of increased accountability, it is important to understand how exemplary teachers navigate the demands placed on them by their schools, districts, and states in order to support student learning aligned with their beliefs of effective instruction. To understand these negotiations, tensions facing exemplary literacy teachers were examined through a qualitative interview study. Participants included nineteen experienced PK-6th grade teachers from across the U.S. Results of the study indicate that teachers experience discrepancies between their beliefs and state and local mandates, and they discuss a variety of strategies for negotiating these discrepancies. Findings suggest that schools can support effective literacy instruction by cultivating cultures of autonomy for teachers and strengthening teachers’ sense of agency

    High-Throughput Computational Screening of Cubic Perovskites for Solid Oxide Fuel Cell Cathodes

    Get PDF
    It is a present-day challenge to design and develop oxygen-permeable solid oxide fuel cell (SOFC) electrode and electrolyte materials that operate at low temperatures. Herein, by performing high-throughput density functional theory calculations, oxygen vacancy formation energy, Evac, data for a pool of all-inorganic ABO3 and A I 0.5 A II 0.5 BO3 cubic perovskites is generated. Using E vac data of perovskites, the area-specific resistance (ASR) data, which is related to both oxygen reduction reaction activity and selective oxygen ion conductivity of materials, is calculated. Screening a total of 270 chemical compositions, 31 perovskites are identified as candidates with properties that are between those of state-of-the-art SOFC cathode and oxygen permeation components. In addition, an intuitive approach to estimate Evac and ASR data of complex perovskites by using solely the easy-to-access data of simple perovskites is shown, which is expected to boost future explorations in the perovskite material search space for genuinely diverse energy applications.</p

    Performance of transition metal-doped CaCO3 during cyclic CO2 capture-and-release in low-pressure H2O vapour and H2O plasma

    Get PDF
    The effects of transition metal doping of calcium carbonate on the subsequent performance of the material during CO2 release and recapture have been evaluated for calcination under low-pressure (~0.1 mbar) water vapour and water plasma conditions. The initial samples were prepared by precipitation method from analytical grade carbonate, calcium and transition metal (Fe, Co, Zn, Cu and Ni) containing precursors. The release-recapture properties of the sorbents were monitored over five cycles involving calcination at 1200 K and carbonation at 825 K. The most noteworthy effects were observed for the Zn-doped samples, which exhibited rapid CO2 recapture. Calcination in H2O plasma was tested to evaluate the potential for in-situ material processing as a means to counteract material degradation. The impact of plasma exposure during calcination on the looping performance was mixed and dependent on the specific sample composition. The performance of the Zn-doped CaCO3 was consistently improved by plasma calcination, yielding high uptake and better retention of carrying capacity over the five cycles. All samples exhibited a deterioration in carrying capacity over repeated cycles. The Zn-doped samples also performed best in this respect (least loss of carrying capacity). The beneficial effects of Zn-doping were dependent on the Zn-content of the precursor solutions used for material synthesis.</p

    Ellipsometric Porosimetry for the Microstructure Characterization of Plasma-Deposited SiO2-Like Films

    Get PDF
    SiO2 layers have been deposited from Ar/O2/hexamethyldisiloxane mixtures in a remote expanding thermal plasma setup enabling a good control of both the ion flux (by changing the deposition chemistry and the arc plasma parameters) as well as the ion energy. This latter is achieved by an additional rf substrate biasing or a tailored ion biasing technique, i.e. a low frequency pulse-shaped bias. The role of the ion energy and ion-to-growth flux ratio on the film microstructure and densification at low substrate temperature (100ºC) has been investigated by means of ellipsometric porosimetry. This technique monitors the refractive index change due to the adsorption (and desorption) of ethanol vapors in the volume of macro-meso-micro pores in the SiO2 layer. From the analysis of the adsorption isotherm and the presence of hysteresis during the desorption step as a function of the equilibrium partial pressure, the open porosity in the layer can be determined. It is found that both biasing techniques lead to densification of the deposited layer, which experiences a transition from micro-/ mesoporosity to microporosity and eventually non-porosity, as function of the increasing ion energy. Although both biasing techniques lead to a comparable critical ion energy value per deposited SiO2 unit (about 100 eV), the ion-to-growth flux ratio and ion energy are not found to be interchangeable parameters. In fact, in the case of the rf bias, the meso- and large micropores are first affected leading to a quantitative decrease of porosity, i.e. from 11% to 3% at an ion energy less than 20 eV. A further increase in ion energy eventually reduces the presence of smaller micropores leading to non porous films at energy of 45 eV. When the pulse-shaped biasing technique is adopted, the micro- and mesopores are simultaneously affected over the whole range of available ion energy, leading to a non porous layer only at very high energy values, i.e. 240 eV. This difference is attributed to the increasing ion-to-growth flux ratio accompanying the rf biasing, as a consequence of the rf plasma generation in front of the substrate

    Self-consistent Fokker-Planck approach to CO2 vibrational kinetics

    Get PDF

    Improved conductivity of aluminum-doped ZnO : the effect of hydrogen diffusion from a hydrogenated amorphous silicon capping layer

    Get PDF
    Plasma-deposited aluminum-doped ZnO (ZnO:Al) demonstrated a resistivity gradient as function of the film thickness, extending up to about 600¿nm. This gradient decreased sharply when the ZnO:Al was capped by a hydrogenated amorphous silicon layer (a-Si:H) and subsequently treated according to the solid phase crystallization (SPC) procedure at 600¿°C. The resistivity reduced from 1.2¿·¿10-1 to 2.6¿·¿10-3 O¿·¿cm for a film thickness of 130¿nm, while for thicker films the decrease in resistivity was less pronounced, i.e., a factor of 2 for a film thickness of 810¿nm. While the carrier concentration was not affected, the mobility significantly increased from 7 to 30 cm2/V¿·¿s for the thick ZnO:Al layers. This increase was ascribed to the passivation of grain boundary defects by hydrogen, which diffused from the a-Si:H toward the ZnO:Al during the SPC procedure. The passivation effect was more pronounced in thinner ZnO:Al layers, characterized by a smaller grain size, due to the presence of large grain boundaries. For thicker films with grain sizes up to 200–300¿nm the mobility became progressively less affected by the presence of grain boundaries. Therefore, the hydrogen-induced improvement in conductivity was less significant for the thick ZnO:Al film
    corecore