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Abstract 

The dissociation of CO2 molecules in plasmas is a subject of enormous importance for 

fundamental studies and in view of the recent interest in carbon capture and carbon-neutral fuels. 

The vibrational excitation of the CO2 molecule plays an important role in the process. The 

complexity of the present state-to-state (STS) models makes it difficult to find out the key 

parameters. In this paper we propose as an alternative a numerical method based on the diffusion 

formalism developed in the past for analytical studies. The non-linear Fokker-Planck equation is 

solved by the time-dependent diffusion Monte Carlo method. Transport quantities are calculated 
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2 

from STS rate coefficients. The asymmetric stretching mode of CO2 is used as a test case. We 

show that the method reproduces the STS results or a Treanor distribution depending on the 

choice of the boundary conditions. A positive drift, whose energy onset is determined by the 

vibrational to translational temperature ratio, brings molecules from mid-energy range to 

dissociation. Vibrational-translational energy transfers have negligible effect at the gas 

temperature considered in this study. The possibility of describing the dissociation kinetics as a 

transport process provides insight towards the goal of achieving efficient CO2 conversion. 

Introduction 

Plasma-assisted gas conversion techniques are widely considered as efficient building blocks 

in a future energy infrastructure which will be based on renewable but intermittent electricity 

sources. In particular CO2 dissociation in high-frequency plasmas is of interest in carbon capture 

and utilization process chains for the production of CO2-neutral fuels
1
. In this case, the

vibrational excitation of the CO2 molecule plays an important role in the energy efficient non-

equilibrium dissociation kinetics, however several aspects of the dissociation kinetics in plasmas 

are still unclear. 

Dissociation takes place when collisions between molecules and electrons, as well as inter-

molecular collisions, provide enough energy to lead an already excited molecule into the 

continuum region thereby producing CO and O. The state-to-state (STS) approach
2,3

 allows to

calculate very accurate reaction rates by considering any vibrational state as an individual 

species. This amounts to solve the so-called Master Equation (ME) for the populations of 

vibrational states
2,4

: The ME is actually a system of n non-linear ODEs (Ordinary Differential
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3 

Equations) where n is the number of vibrational states considered, with a complex right hand 

side including terms for any possible chemical process, each in the form of a product of the 

values of the vibrational distribution function (VDF) and a temperature dependent rate 

coefficient. 

The rate coefficients are selected from literature data or, for electron induced processes, 

calculated from the related cross sections and the electron energy distribution function (EEDF). 

The main problem in calculating the VDF for a polyatomic molecule is the large number of 

states leading to a huge number of possible transitions between them. This leads to high 

computational costs and requires large sets of data, most of which not well known. 

Specially in the past few years, strong efforts have been devoted to reducing the complexity 

of the kinetics of CO2 dissociation in plasmas, after many years of inactivity after the works of 

Gordiets and other scientists on lasers kinetics.
4,5

 The current availability of computational

resources allows the implementation of multi-dimensional fluid models for the description of the 

non-thermal plasmas where CO2 is activated, but still, the complexity of the plasma/neutral 

chemistry has to be coupled to the flow of the gas/plasma and to the electromagnetic field used 

to generate the plasma. A further complication is given by the presence of multiple time and 

length scales in the kinetics and dynamics of neutral and charged particles. 

In the case of CO2 molecules, three vibrational modes have to be accounted for: symmetric 

stretching, doubly degenerate bending and asymmetric stretching. Usually the formalism 

CO2(i,j,k) is used where i,j,k are respectively the numbers of quanta in these modes. The 

redistribution of internal energy in CO2 is the result of a series of elementary processes, 

including VT (vibration to translation) energy exchanges CO2(i,j,k) + X � CO2(u,w,v) + X 
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4 

 

where internal energy is partially converted into kinetic energy and VV (vibration to vibration) 

energy exchanges, CO2(i,j,k) + CO2(l,m,n) � CO2(u,w,v) + CO2(a,b,c), where most of the 

internal energy is kept as such but redistributed. In this last case energy conservation strongly 

constraints the possible outcomes. 

Armenise et al.
6
 considered a complex STS vibrational kinetics for the CO2 molecule, 

whereby the vibrational modes are not independent, but a reduced model obtained by lowering 

the dissociation energy was used to decrease the number of vibrational states from 9018 to 1224. 

In multi-temperature models (e.g. the one by Kustova et al.
7
), each vibrational mode is described 

by a vibrational temperature, but the rapid VV exchange results in the establishment of a 

Boltzmann distribution with a single temperature T12 of the combined symmetric and bending 

modes. 

In plasma conditions, the detailed discussion in Fridman
8
 (see also Kozák et al.

3
) shows that 

the most important contribution to dissociation is given by vibrational excitation of the 

asymmetric mode. These works focus on the kinetics of this mode. In this light, it is assumed that 

the dominant exchange processes are intra-mode VV where only v changes and corresponding 

VT and eV processes (e + CO2(v) � e + CO2(v’)) involving the asymmetric stretching mode 

only. To some limited extent the coupling of the asymmetric stretching mode with the other 

modes has been included in Kozák et al.
3
 In this work, although we use a conceptually different 

approach, we are using rate coefficients which are the same as in the aforementioned paper, 

therefore even in these first calculations, our approach inherits the partial coupling with the other 

modes. 
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5 

 

Even with a single mode, the kinetics is still complex and requires high computational cost, 

especially when used in 2D or 3D models. 

Peerenboom et al.
9
 applied a dimension reduction method based on principal component 

analysis to a STS kinetics model of CO2 plasmas. Berthelot et al.
10

 developed a lumped-levels 

model to avoid solving equations for all individual CO2 vibrational levels, demonstrating that a 

3-groups model is able to (more or less) reproduce the asymmetric mode vibrational distribution 

function of CO2. Similar procedures where applied in the past to compress the computational 

requirements of recombining plasma models.
11

 In the paper by de la Fuente et al.
12

, a reduction 

methodology for the STS kinetics was illustrated, whereby the asymmetric stretching vibrational 

mode levels are lumped within a single group or fictitious species. 

A big help in this effort is provided by analytical results obtained in the past describing 

specific conditions. For example, under the hypothesis that the i � j and j � i transitions are 

balanced (i and j are two generic vibrational quantum numbers), and that only intra-mode 

vibrational exchange processes are important, the Treanor distribution
13

 

( )0

2 /v/vexp)v( TxTAP ev ωω hh +−=        (1) 

is obtained. In the multi-mode case a more general Treanor-Likal’ter
14,15

 distribution would be 

appropriate. In Eq. (1), v is the vibrational level quantum number of the asymmetric mode, A is a 

normalization factor, ω  is the vibrational quantum in the energy space, Tv and T0 are the 

vibrational and gas temperature, respectively, ex  is the coefficient of anharmonicity. In P(v), Tv 

is a parameter related to the internal energy, and describes the population of the first two 

vibrational levels. 
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6 

 

Since the rate coefficients for VT processes increase dramatically for high vibrational 

quantum numbers leading to a drop in the high energy region of the VDF, previous studies 

considered these processes as the main limiting factor to achieve effective molecular 

dissociation.
1,2,4

 Since, however, dissociation can be represented as boundary conditions of the 

kinetic problem, it appears natural to elaborate these concepts using a mathematical approach 

based on partial differential equations. Accordingly, in this paper we reconsider an alternative 

approach to STS models, presently overlooked being more mathematically demanding with 

respect to STS models. This is the approach used in analytical theories developed in the 

70’s.
4,5,8,16-18

 

The approach in question is based on the diffusion approximation
4,16

, which transforms the 

ME for the VDF into a Fokker-Planck (FP) equation. Traditionally, in the FP approach as 

performed by Rusanov et al.
16

, equations are solved by assuming a condition of null flux, i.e. 

J(ε) = 0 where J is the total flux of molecules along the energy axis due to VV and VT processes. 

Dissociation, of course, is connected to the boundary condition for ε = εdiss, where εdiss is the 

dissociation limit. Therefore one of the important messages of this paper is the fact that the 

condition of null flux, is not consistent with the presence of the dissociation process: CO2 

molecules must experience a net flux from low vibrational levels to the dissociation threshold. 

An FP approach opens the possibility to include the non-zero flux boundary condition in a 

logical way. 

Our approach is to apply to the FP equation numerical solution techniques in order to avoid 

the use of approximations which were necessary for the analytical solution; furthermore, we 

calculate the transport coefficients which enter into the equation from the best available data
3
 and 

provide continuum interpolations consistent with the diffusion method. 
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7 

 

 

Computational method 

The core of the diffusion approach is the replacement of the system of ordinary differential 

equations describing the kinetics of discrete levels with a single second order partial differential 

equation, the FP equation. A large literature is found on the derivation of the FP equation.
4,8,16,19

 

The use of this equation is justified when transitions between levels close in energy dominate. It 

implies that molecules are redistributed in energy according to two classes of transport 

phenomena: 1) the drift, which is deterministic in nature, and moves molecules initially at the 

same energy at a single new energy after a given time; 2) the diffusion, which is stochastic in 

nature, and spreads in energy an initial ensemble of particles.  

In the diffusion approach, the set of quantum numbers for the vibrational levels is replaced by 

a continuous energy ε, and two coefficients, a drift coefficient a(ε) and a diffusion coefficient 

b(ε), are introduced instead of the large number of detailed rate coefficients of the STS approach. 

The drift coefficient measures the speed at which molecules gain (or lose, if negative) energy and 

therefore is measured in eVs
-1

; the diffusion coefficient is one-half of the rate of increase in 

variance of the energy distribution of an ensemble of test molecules initially at the same energy, 

therefore it is measured in eV
2
s

-1
. These two coefficients, which are functions of ε, are calculated 

with standard integral formulas
8,19

 based on kinetic data. This approach, based on two 

coefficients only, is accurate for chemical processes where the energy exchange is much smaller 

than the dissociation energy (the “mean free path” must be smaller than the “gradient scale 

length” in energy space). Accordingly, usually only mono-quantum processes are included into 

the description. Although few-quantum transitions can be included, multi-quantum jumps are 
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8 

 

outside the diffusion approximation. The FP equation is non-linear in the case of CO2 vibrational 

kinetics due to the nature of the resonant VV process. The problem to be solved has the form: 

RJRfcfbaftf
t

+
∂
∂

−=+++−=
ε∂ε

∂
∂ε
∂

ε
∂
∂

))((),( ,     (2) 

where f(ε,t) is the internal energy distribution of molecules, a(ε) accounts for the drift due to 

vibrational excitation by electrons (eV) and VT processes; b(ε) is the diffusion coefficient due to 

eV, VT and non-resonant VV processes, c(ε) is the reduced diffusion coefficient due to resonant 

VV processes, R is the sub-threshold dissociation term. Molecules always dissociate when ε > 

εdiss, where εdiss is the dissociation limit, therefore the boundary condition for a solution of Eq. 

(2) is f(εdiss) = 0.
20

 Note the difference between assuming a null value of the distribution and a 

null value of the flux. 

Both a(ε), the drift coefficient, and b(ε), the diffusion coefficient, are calculated from the rate 

coefficients of different chemical processes using the known formulas from the theory of 

stochastic processes
19

. These rate coefficients are the same used in a STS model (in this work, 

for example, the ones in the paper by Kozák et al.
3
 were used). According to this theory, the 

diffusion coefficient is given by b(ε) ~ 
1

2
 d

2
 v where d is the energy exchanged in a single event 

and ν is the event frequency per molecule. The drift coefficient a(ε) is given by a(ε) ~ d v. In our 

case, d ~ ωh , the single process energy exchange calculated by a continuum fit of the energy 

levels, ν is the chemical reaction rate per molecule given by kn' where k is the rate coefficient 

and n' is the number density of the reaction partner. Both the a(ε) and b(ε) coefficients are the 

sum of contributions due to corresponding STS processes. For example, the contribution to the 

drift of mono-quantum VT processes, CO2(v) + M � CO2(v-1) + M, is given by 
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9 

 

MVTVT nka )()()( εωε h−=          (3) 

and the contribution to the diffusion coefficient b due to VV linear processes (VV1) is given 

by 

1

2

0 )()(
2

1
)(

11
Pnkb VVVV ωεε h= ,        (4) 

where n0 is the neutral gas density, 
1VVk  is the rate coefficient for linear VV processes. With 

respect to the formula (3-127) in Fridman
8
, Eq. (4) has been corrected by a factor 

1P  which is the 

fractional population of the v = 1 level in a Treanor distribution 

( )ωεε h0
2

01011 //exp
)0(

)1(
TxT

P

P
P ev +−== ,       (5) 

where 01ε  is the energy difference between v = 0 and v = 1, to account for the fact that the 

partner of the X(v) + X(1) � X(v+1) + X(0) collision is not any molecule, but only the ones in 

the v = 1 state. Only collisions with the v = 1 state are included, collisions with higher levels 

being comparatively less important. The contributions to a and b due to other STS processes are 

calculated analogously. Since many different values of the rate coefficients may produce nearly 

the same values of the transport coefficients a and b, in this sense a data reduction is achieved. 

The transport coefficients are the sum of the contributions of all chemical processes. A 

fundamental step is based on the principle that, under the hypothesis of null flux, the Treanor 

distribution (Eq. (1)) must be recovered. This implies that all the processes contributing to b, also 

give a contribution to a according to the formula
8
: 
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−−=

ω
ε

εε
h0

21
)()(

T

x

T
ba e

v

.        (6) 

The first term into the brackets is easily recognized in terms of detailed balance, or 

fluctuation-dissipation relation
19

, while the second one introduces the effect of the anharmonicity 

parameter xe and the gas temperature T0 which may differ from Tv in the non-equilibrium case. 

In the continuum formulation it is simple to account for detailed balance. While in the STS 

approach a list of relations must be satisfied by the VV rate coefficients, in the continuum 

approach it is sufficient to include an additional term into the expression of the drift coefficient. 

In this way, following the analytical approach, it can be seen that the Treanor distribution is 

obtained if the vibrational flux 

fbafJ
∂ε
∂

−=           (7) 

is set equal to zero (compare with Eq. (1.13) in Rusanov et al.
16

 and Eq. (13) in Brau
18

). The 

proposed approach in this paper generalizes that based on assuming J = 0. In fact, although this 

approximation has been useful in the past, it is actually not realistic, since molecules eventually 

dissociate, and dissociation begins an irreversible diffusion from sub-threshold energies to the 

threshold energy, implying the presence of a nonzero flux in vibrational energy space. In order to 

avoid this approximation, the FP equation can be solved by a numerical approach for which the 

assumption of J = 0 is not required. 

Several numerical methods are applicable to the solution of the FP equation in the context of 

our approach: in this paper we use a diffusion Monte Carlo method already applied in the past to 
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similar problems.
21

 This method is based on the short-time propagator of the drift-diffusion 

equation (Eq. (2)) which is given by 

bh

ah

e
bh

hG 4

)( 2

4

1
),(

−
−

=+
ξ

π
ξε ,        (8) 

i.e. the Green function of the Eq. (2) for constant a(ε) and b(ε) and neglecting boundary 

conditions (hence approximated for short time)
22

, where h is a numerical time step. The choice of 

the time step is based on the requirement that the average energy shift is much less than εdiss, say 

εdiss/100, while a criterion for the convergence of the solution was to check that the steady-state 

for the function f was reached. The solution of Eq. (2) at time t+h is calculated from the solution 

at time t using the following convolution equation
22

 

ξξεξεε dtfhGhtf ),(),(),( ++=+ ∫ .       (9) 

Eq. (8) is applied to an ensemble of mathematical dots (walkers) each with a “mathematical 

weight” ip  and a specified energy iε  which represents the VDF when used to estimate 

macroscopic quantities. 

Basically any walker at any time step performs two moves, the first one deterministic and the 

second one stochastic. The first move takes into account drift described by the a coefficient and 

it is simply an energy shift given by ha )(ε+ . The second move produces a random shift 

according to the Gaussian distribution of variance hb )(2 ε . 

This method allows a simple treatment of boundary conditions and is free from numerical 

diffusion, which means that a Gaussian solution propagates under a constant a(ε) and null b(ε) in 
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the exact way, by shifting its center of mass. Since the solution ranges several orders of 

magnitudes, a variance reduction, based on the Russian roulette method,
23

 is implemented to 

reduce the computational cost. 

Non-linear VV processes (VVn), e.g. 1)X(v1)X(v2X(v) ++−→  are included in a 

straigthforward way. The reduced diffusion coefficient c in Eq. (2) is given by 

2ωk1/2 )()( 1vv,

1vv, h
+
− . In a time-dependent approach, f is known from previous calculations, and 

using Eq. (2) c is calculated and summed as a non-linear contribution to the coefficient b in Eq. 

(7). 

Sub-threshold dissociation processes are described by the term R in Eq. (2). This term has the 

form R = -k’n’, where k’ is the corresponding rate coefficient, and has dimensions [1/time]. 

Therefore sub-threshold dissociation is included by a removal process of the walker, with 

probability p = 1-exp(-Rh). For both this process and the threshold process, the removed walkers 

are redistributed randomly in order to keep the normalization constant. 

The function f must be normalized appropriately if STS rate coefficients are used to calculate 

the non-linear diffusion coefficient c. This is also useful in order to compare the results of the 

diffusion approach to STS calculations. The STS populations are attributed to levels which are 

limited in number and the populations of such levels sum to n0, the total number density of 

molecules, while the normalization of f is based on its integral in the (0, εdiss) range. An 

appropriate normalization can be formulated based on the equilibrium case where the population 

of each STS level is given by the Boltzmann distribution, therefore its value for v = 0 is given by 

n0/Z, Z being the partition function. The corresponding continuous function has a value of n0/Tv 

(the energy is defined in such a way that the energy for the v = 0 level is zero): This means that 
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all energies are scaled down by the zero-point energy of the considered degree of freedom. 

Therefore, the appropriate normalization is established by setting 

Z

T
ndf v

diss

0

0

)( =∫ εε
ε

.          (10) 

In such a way, the level populations are matched in the equilibrium case. In this equation, Z 

(expressed in m
-3

) is actually a cut-off partition function, i.e. the sum of the populations of the 

very first levels is a Boltzmann distribution at the temperature Tv. The exact number of levels > 2 

is immaterial at normal values of Tv, and the difference between this sum and the same calculated 

using a Treanor distribution is very small. The full function based on the Treanor distribution is 

not an appropriate choice since the Treanor distribution increases exponentially at high energy. 

In order to calculate the a and b coefficients and the c reduced diffusion coefficient due to 

VVn processes in the CO2 molecule case, a continuous polynomial fit of the VV1, VVn and VT 

rate coefficients at 300 K of the data in Figure 2 in Kozák et al.
3
 as a function of ε (not of the 

discrete vibrational level index v) is included, as well as a fit of the average energy exchange 

δε(ε) of these processes. For the VV1 and VVn processes xe in eq. (6) was set equal to 5.25×10
-3

, 

as in reaction (V8) in Kozák et al.
3
 A functional expression of the rate coefficients k(ε) as 

functions of ε is necessary in some expressions for a and b as seen above. To this aim, we have 

interpolated the corresponding STS rate coefficients after replacing the quantum number v with 

the corresponding energy as independent variable. The interpolations used in this work are for a 

fixed T0 and log k or k, depending on the case, is fitted as ∑
=

4

0i

ic iε . To calculate the rate 

coefficients at different temperatures, the temperature dependencies reported by Kozák et al.
3
 are 

used. Note that VV’a and VV’b processes in Kozák et al.
3
 are here considered as VT processes, 
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as also recommended in Kozák et al.
3
 Those processes are VV’ relaxations between the 

asymmetric and the first two symmetric mode levels, CO2(v) + CO2 � CO2(v-1) + CO2(va), 

CO2(v) + CO2 � CO2(v-1) + CO2(vb). 

As sub-threshold dissociation process we have included reaction (N1) in Kozák et al.
3
, that is 

CO2(v) + M � CO + O + M, where M is any neutral species, assuming for simplicity collisions 

with CO2 molecules (in any vibrational state) only. The processes included in the present 

calculations are summarized in Table 1. 

 

 

Results and Discussion 

In Figure 1, the steady-state solution of Eq. (2) is reported for n0 = 2.33×10
23

 m
-3

, T0 = 300 K 

and three different values of the parameter Tv. The value for the CO2 number density is based on 

the results reported on Figure 7 (the 8 ms case) in Kozák et al.
3
 for a power density of 30 W cm

−3
 

and a pressure of 2660 Pa which are typical for a CO2 conversion reactor.
24,25

 

As can be seen, the solution for high energies is strongly sensitive to the value of Tv. For 

comparison, the result of STS calculations by Kozák et al.
3
, based on the same values of the rate 

coefficients, is reported. The scheme is able to capture the trend of the STS calculations which 

correspond to a vibrational temperature of 0.19 eV (an estimate based on using the Boltzmann 

distribution then slightly higher than 0.18 eV here) and therefore is also semi-quantitatively 

compatible. It is not necessary to match Tv exactly, since this last has a different definition in the 

discrete and continuum regime. In fact, Tv here is a parameter inside the transport equation, 
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whereas in the STS approach it is deduced a posteriori from the n(v = 1)/n(v = 0) population ratio. 

It should be noted that we do not include linear VV collisions with states different than v = 1, 

differently from what is done in Kozák et al.
3
 This proves that v = 1 is the most important level and 

that with the inclusion of those collisions only, most of the VDF and all the essential features 

obtained with the STS model can be reproduced. Also, we do not include reaction (N2) in Kozák et 

al.
3
, that is CO2(v) + O � CO + O2, since there was no information available on the number 

density of O atoms. This could affect the shape of the VDF in some conditions, as shown in 

Berthelot and Bogaerts.
26

 However, apparently it is not very important in this case, since we almost 

obtain the same VDF. 

These calculations allow to perform a first quantitative discussion of the actual transport 

processes of molecules along the vibrational energy scale. In particular, it is possible to 

characterize the drift and diffusion coefficients for different vibrational and gas temperatures and to 

calculate the contribution of the chemical processes to the energy flux J which is connected to 

molecule dissociation. 

Indeed, as shown in Figure 2, our formulation shows the role of the real main factors 

determining the shape of the VDF. Including only VV1 processes with appropriate boundary 

conditions, the familiar non-equilibrium shape with a long plateau (lower curve) is obtained. Only 

when non physical reflecting boundary conditions (i.e. J = 0) at the dissociation threshold are used 

(upper curve) the Treanor distribution appears. This also demonstrates that detailed balance is not a 

sufficient condition to obtain the Treanor distribution, that appears only when the requirement of a 

reflecting boundary condition is selected. With the assumption of reflecting boundary conditions, 

VT processes can play a role and display a qualitatively satisfactory trend (intermediate curve), but 

this trend is still far from the solution of the complete equation, and VT processes play a negligible 
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role in the conditions of the present calculations when the appropriate boundary is used. Under the 

null flux hypothesis, VT processes are found to be essential to retrieve the characteristic shape 

(including a high slope bulk, a low slope plateau, and high slope tail) of the vibrational 

distribution.
16

 The same concept applies to STS as well, in the sense that a Treanor distribution 

must result from STS calculations if the dissociation process and VT processes are removed. In 

Figure 7 in Berthelot and Bogaerts,
26

 consistently with our general theory, a raise of the VDF is 

observed removing the dissociation process in STS calculations, although they do not obtain an 

actual Treanor distribution. These findings are discussed more quantitatively in the next figures. 

In particular, in Figure 3, the coefficients a and b for the distribution with VV1 processes only, 

that reproduces the Treanor distribution in Figure 2, are reported. It can be seen that the b 

coefficient has a relatively weak dependence on the energy, while the drift coefficient a increases 

steadily and changes sign at a defined energy depending on the value of the Tv/T0 parameter. This 

feature is mostly an effect of the second term inside parentheses of Eq. (6) for a and therefore it is a 

result of the anharmonicity of the oscillators. This sign change determines most of the shape of the 

VDF as shown above. 

In Figure 4, the coefficients a and b for the case in Figure 1 that reproduces closely the results in 

Kozák et al.
3
 (Tv = 0.18 eV) are displayed. This figure shows that the diffusion approach produces 

an effective alternative interpretation of the main phenomena occurring in the vibrational kinetics. 

The VDF appears as the result of the diffusion in energy space due to VV processes, accelerated in 

the middle-v region by the drift due to linear VV process. VT processes never play a significant 

role, their contribution to drift being much lower than VV and VV’ processes. It can be seen that 

the non-linear VV processes are significant only in the low energy region, not an important issue 

since the low energy part is close to the Treanor distribution. 
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In Figure 5 steady-state results are shown for a higher vibrational temperature of 0.25 eV (n0 

and T0 were not changed with respect to the previous cases). In Figures 6 and 7 the transport 

coefficients for two of the curves in Figure 5 are shown. In this case, the energy corresponding to 

the minimum of the Treanor distribution is lower. The plateau of the VDF begins correspondingly 

at a lower energy. Figure 6, when compared to Figure 3, shows that the main effect of increasing Tv 

is the shift of the drift coefficient a curve to lower energies while b is not much affected. Again, the 

second term in Eq. (6) makes the difference. 

To better demonstrate this point, Figures 8-9 show the coefficients a and b for different values 

of the gas and vibrational temperature. These plots show that the “no return” energy level beyond 

which a molecule most likely dissociates shifts to lower energies when T0 is reduced. We believe 

that this is the main reason of the higher energy efficiency found in low T0 reactors, like the ones 

exploiting plasma vortexes and expansions
1
. In particular, the main parameter appears to be the 

temperature ratio Tv/T0 which is related to the energy of the Treanor minimum. Of course, in cases 

like the ones in Figures 8-9 where the a(ε) coefficient is always negative, a “no return point” is 

never reached, but molecules can dissociate anyway due to the random processes of diffusion: the 

dissociation rate is correspondingly low in such cases. 

As a consequence of the no-return energy concept, VT processes can hardly affect dissociation 

even under conditions where they could affect the VDF. In fact, high energy molecules are pushed 

by the drift toward dissociation. VT processes may push molecules backwards, but this will only 

produce an increase of the VDF to compensate the effect. This situation can change under high 

temperature conditions where VT processes may become important for vibrational levels below the 

Treanor minimum. 
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While these results show the critical role played by the temperature ratio Tv/T0 as a parameter, it 

is true that the value of this parameter must be determined (if the case, as a function of time) in a 

full model. This has been done in recent STS models by including eV processes and their 

corresponding exothermic, second-kind collisions.
3,26-28

 However, only the very first levels enter 

the energy balance which determines Tv for a given T0, therefore the diffusion model could be 

integrated in the next future by a very reduced STS energy balance involving only these levels, e.g. 

three of them. A simple energy balance able to estimate the value of Tv can be established based on 

the populations of the lowest vibrational levels, even just v = 0 and v = 1. The balance is based on 

the eV processes (v = 0) � (v = 1) and (v = 1) � (v = 0) and the VV1 process (v = 1) + (v = 1) � 

(v = 2) + (v = 0). A simplified steady-state population balance is written in the form: 

)//exp()1(   ,)0(

)1()1()0(

0

2
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00

212

101001

ωεε hTxT
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+−==

+=
. (11)

 

Note that Eq. (11) differs from the usual form of the simplified population balance in using the 

Treanor instead of the Boltzmann distribution. In view of results of the present study (e.g. Figure 

1) this is expected to be generally more accurate. Furthermore, in the diffusion approach, Tv is a 

parameter describing the low energy behaviour of the solution of Eq. (2), therefore, Eq. (1) fixes it 

unambiguously even for strong non-equilibrium cases. Since, with good approximation, keV01 and 

keV10 are related by the detailed balance relation (exact in the case of a Maxwellian EEDF), Eq. (11) 

is readily solved producing Tv as a function of Te and ne. In the case of strongly non-equilibrium 

EEDFs, the usual approach based on the two-term Boltzmann equation
2, 27

 can be used to calculate 

keV01 and keV10. Eq. (11), therefore, implies that the most important processes controlling the 

diffusion flux J are the (v = 0) � (v = 1) eV transition and the (v = 1) + (v = 1) � (v = 0) + (v = 2) 
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VV process. Furthermore, from the opposite point of view, the diffusion approach could be used to 

extrapolate, and accelerate considerably, the STS model from the lowest levels upwards. This 

perspective is very promising for future STS models including detailed coupling to the other two 

vibrational modes, or even rotational levels. 

 

Conclusions
 

In this work the diffusion approach was used to study the vibrational kinetics of CO2 molecules 

in the context of plasma dissociation. To this aim, the FP equation is solved numerically in order to 

avoid the use of strong approximations. 

Explicit formulas for the transport coefficients a, b and c, this last describing the non-linear 

effects, are obtained based on the theory of stochastic processes and interpolation of STS rate 

coefficients. Results are found to be in good agreement with STS calculations in the literature. The 

results assuming the null flux approximation are reproduced by preventing molecules to dissociate 

even when reaching εdiss (i. e. a reflecting boundary condition), which, of course, is not physical. 

Under such conditions, the Treanor distribution is found for a long enough time, a result fully 

consistent with Treanor’s original derivation.
13

 By removing this condition and allowing molecules 

to dissociate, the plateau in the VDF is obtained even using only linear VV processes. This 

demonstrates that the essential features of the VDF are mostly a result of the dissociation process 

which acts like a boundary condition, removing the exceedingly restrictive null flux condition. Our 

results show that CO2 molecules reach dissociation threshold under the effect of a positive 

vibrational drift which onsets at the energy corresponding to the minimum of the Treanor 

distribution obtained in the null flux case. This conclusion implies that CO2 molecules are most 
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likely to dissociate after reaching the no-return energy point which becomes lower when the gas 

temperature is decreased. This effect, more than the temperature dependence of VT processes, may 

explain why low gas temperature non-equilibrium plasmas are producing such good results in 

terms of obtaining high energy efficiency to dissociatie molecules. Of course this finding is 

specific to CO2, but in perspective our approach can be applied to the dissociation kinetics of other 

molecules like CH4 or more complex ones, allowing to determine the role of boundary conditions 

and the main factors affecting molecular dissociations in such cases. 

In this respect, our method requires, in order to calculate appropriate transport coefficients, the 

determination of very accurate rate coefficients sets specially in terms of consistency of trends 

(with quantum numbers, with temperature). New rate coefficients sets, furthermore, for the three 

normal modes, for example involving CO2(i, j, k) become timely and usable in view of the 

possibility of a multi-dimensional generalization of the continuum approach. 
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Table 1.  Elementary reactions used in the calculations. All rate coefficients are calculated using 

data in Kozák et al.
3
 

 

Name  Reaction      Note 

 

VV1  CO2(1) + CO2(v) � CO2(0) + CO2(v+1) 

VVn  CO2(v) + CO2(v) � CO2(v-1) + CO2(v+1) 

 

VT  CO2(v) + CO2 � CO2(v-1) + CO2   
a
 

 

Dissociation CO2(v) + CO2 � CO + O + CO2   
b
 

 
a
 Sum VTa + VTb + VTc + VV'a + VV'b  in Kozák et al.

3
 

b
 Sub-threshold contribution 
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Figure 1. Demonstration that the improved FP approach catches the essential features of the 

Master Equation. Here the vibrational distribution function of the asymmetric mode levels of the 

CO2 molecule is calculated for different values of the vibrational temperature. Results based on 

expressions of a, b, c and R obtained from rate coefficients in Kozák et al.
3
 Dots represent STS 

calculations results in Figure 7 (8 ms) in Kozák et al.
3
 for a power density of 30 W cm

−3
 and a T0 

of 300 K, giving a Tv of 0.19 eV, determined from the ratio of the populations in the v = 0 and v 

= 1 levels. 
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Figure 2. Vibrational distribution functions for n0 = 2.33×10
23

 m
-3

, T0 = 300 K and Tv = 0.19 eV, 

obtained for different choices of the boundary condition and processes: VV1 processes only 

(black line), VV1 and VT processes (green line) and absorbing wall boundary condition (blue 

line). The theoretical Treanor distribution function (red line, shifted upwards for better 

representation purposes) is also shown. 
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Figure 3. Vibrational distribution function with VV1 processes only, that reproduces the Treanor 

distribution for Tv = 0.19 eV and T0 = 300 K (see Figure 2) (top) and corresponding coefficients 

a and b (bottom). In the top panel, the theoretical Treanor distribution function (shifted upwards 

for better representation purposes) is also shown. 
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Figure 4. Vibrational distribution function for the case closer to the results in Kozák et al.
3
 (Tv = 

0.18 eV and T0 = 300 K, see Figure 1) (top) and corresponding coefficients a and b (bottom). 
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Figure 5. Vibrational distribution functions for n0 = 2.33×10
23

 m
-3

, T0 = 300 K and Tv = 0.25 eV, 

obtained for different choices of the boundary condition and processes. The theoretical Treanor 

distribution function (shifted upwards for better representation purposes) is also shown. 
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Figure 6. Vibrational distribution function with VV1 processes only, that reproduces the Treanor 

distribution for Tv = 0.19 eV and a T0 = 300 K (see Figure 5) (top) and corresponding coefficients 

a and b (bottom). In the top panel, the theoretical Treanor distribution function (shifted upwards 

for better representation purposes) is also shown. 
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Figure 7. Vibrational distribution function with all the processes included (Tv = 0.25 eV and a T0 

= 300 K, see Figure 5) (top) and corresponding coefficients a and b (bottom). 
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Figure 8. Coefficients a and b for the distribution with VV1 processes only, for Tv = 0.19 eV and 

T0 = 100 K (top) and 800 K (bottom). 
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Figure 9. Coefficients a and b for the distribution with VV1 processes only, for Tv = 0.25 eV and 

T0 = 100 K (top) and 800 K (bottom). 
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