1,796 research outputs found

    CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab

    Full text link
    A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams provide unique conditions for this type of experiments. Recent addition of the Frozen Spin Target (FROST) gives a remarkable opportunity to measure double and triple polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete experiment becomes possible and will allow model independent extraction of the reaction amplitude. An overview of the experiment and its current status is presented.Comment: 6 pages, 7 figures. Invited paper NSTAR 2009 conferenc

    The prisoners dilemma on a stochastic non-growth network evolution model

    Full text link
    We investigate the evolution of cooperation on a non - growth network model with death/birth dynamics. Nodes reproduce under selection for higher payoffs in a prisoners dilemma game played between network neighbours. The mean field characteristics of the model are explored and an attempt is made to understand the size dependent behaviour of the model in terms of fluctuations in the strategy densities. We also briefly comment on the role of strategy mutation in regulating the strategy densties.Comment: 8 pages, 8 figure

    Plasticity facilitates sustainable growth in the commons

    Get PDF
    In the commons, communities whose growth depends on public goods, individuals often rely on surprisingly simple strategies, or heuristics, to decide whether to contribute to the common good (at risk of exploitation by free-riders). Although this appears a limitation, here we show how four heuristics lead to sustainable growth by exploiting specific environmental constraints. The two simplest ones --contribute permanently or switch stochastically between contributing or not-- are first shown to bring sustainability when the public good efficiently promotes growth. If efficiency declines and the commons is structured in small groups, the most effective strategy resides in contributing only when a majority of individuals are also contributors. In contrast, when group size becomes large, the most effective behavior follows a minimal-effort rule: contribute only when it is strictly necessary. Both plastic strategies are observed in natural systems what presents them as fundamental social motifs to successfully manage sustainability

    Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom

    Full text link
    In the paper it will be shown that Reichenbach's Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A and B supported in spacelike separated double cones O(a) and O(b), respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of O(a) and O(b) and commuting with the both A and B. Since noncommuting common cause solutions are presented in these states the abandonment of commutativity can modulate this result: noncommutative Common Cause Principles might survive in these models

    The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon

    Full text link
    The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules that connect the Compton scattering amplitudes to the inclusive photoproduction cross sections of the target under investigation. Being based on such universal principles as causality, unitarity, and gauge invariance, these sum rules provide a unique testing ground to study the internal degrees of freedom that hold the system together. The present article reviews these sum rules for the spin-dependent cross sections of the nucleon by presenting an overview of recent experiments and theoretical approaches. The generalization from real to virtual photons provides a microscope of variable resolution: At small virtuality of the photon, the data sample information about the long range phenomena, which are described by effective degrees of freedom (Goldstone bosons and collective resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at the larger virtualities. Through a rich body of new data and several theoretical developments, a unified picture of virtual Compton scattering emerges, which ranges from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-energy side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl

    Energy Calibration of the JLab Bremsstrahlung Tagging System

    Get PDF
    In this report, we present the energy calibration of the Hall B bremsstrahlung tagging system at the Thomas Jefferson National Accelerator Facility. The calibration was performed using a magnetic pair spectrometer. The tagged photon energy spectrum was measured in coincidence with e+e−e^+e^- pairs as a function of the pair spectrometer magnetic field. Taking advantage of the internal linearity of the pair spectrometer, the energy of the tagging system was calibrated at the level of ±0.1\pm 0.1% E_\gamma. The absolute energy scale was determined using the e+e−e^+e^- rate measurements close to the end-point of the photon spectrum. The energy variations across the full tagging range were found to be <3<3 MeV.Comment: 15 pages, 12 figure

    Problems with Using Evolutionary Theory in Philosophy

    Get PDF
    Does science move toward truths? Are present scientific theories (approximately) true? Should we invoke truths to explain the success of science? Do our cognitive faculties track truths? Some philosophers say yes, while others say no, to these questions. Interestingly, both groups use the same scientific theory, viz., evolutionary theory, to defend their positions. I argue that it begs the question for the former group to do so because their positive answers imply that evolutionary theory is warranted, whereas it is self-defeating for the latter group to do so because their negative answers imply that evolutionary theory is unwarranted

    Learning From Early Attempts to Generalize Darwinian Principles to Social Evolution

    Get PDF
    Copyright University of Hertfordshire &amp; author.Evolutionary psychology places the human psyche in the context of evolution, and addresses the Darwinian processes involved, particularly at the level of genetic evolution. A logically separate and potentially complementary argument is to consider the application of Darwinian principles not only to genes but also to social entities and processes. This idea of extending Darwinian principles was suggested by Darwin himself. Attempts to do this appeared as early as the 1870s and proliferated until the early twentieth century. But such ideas remained dormant in the social sciences from the 1920s until after the Second World War. Some lessons can be learned from this earlier period, particularly concerning the problem of specifying the social units of selection or replication

    Motor control by precisely timed spike patterns

    Full text link
    A fundamental problem in neuroscience is to understand how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories of neural coding assume that information is conveyed by the total number of spikes fired (spike rate), recent studies of sensory and motor activity have shown that far more information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear whether the information carried by spike timing actually plays a causal role in brain function. Here we demonstrate how a precise spike timing code is read out downstream by the muscles to control behavior. We provide both correlative and causal evidence to show that the nervous system uses millisecond-scale variations in the timing of spikes within multi-spike patterns to regulate a relatively simple behavior - respiration in the Bengalese finch, a songbird. These findings suggest that a fundamental assumption of current theories of motor coding requires revision, and that significant improvements in applications, such as neural prosthetic devices, can be achieved by using precise spike timing information.Comment: 48 pages, 16 figure

    Photofission of heavy nuclei at energies up to 4 GeV

    Full text link
    Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and natPb have been measured simultaneously, using tagged photons in the energy range Egamma=0.17-3.84 GeV. This was the first experiment performed using the Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the photofission cross section for 238U relative to that for 237Np is about 80%, implying the presence of important processes that compete with fission. We also observe that the relative photofission cross sections do not depend strongly on the incident photon energy over this entire energy range. If we assume that for 237Np the photofission probability is equal to unity, we observe a significant shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let
    • 

    corecore