9,860 research outputs found

    Radiation effects in MOS integrated circuits

    Get PDF
    High energy electron irradiation effects on field effect transistors in integrated circuit device

    Dirac model of electronic transport in graphene antidot barriers

    Full text link
    In order to use graphene for semiconductor applications, such as transistors with high on/off ratios, a band gap must be introduced into this otherwise semimetallic material. A promising method of achieving a band gap is by introducing nanoscale perforations (antidots) in a periodic pattern, known as a graphene antidot lattice (GAL). A graphene antidot barrier (GAB) can be made by introducing a 1D GAL strip in an otherwise pristine sheet of graphene. In this paper, we will use the Dirac equation (DE) with a spatially varying mass term to calculate the electronic transport through such structures. Our approach is much more general than previous attempts to use the Dirac equation to calculate scattering of Dirac electrons on antidots. The advantage of using the DE is that the computational time is scale invariant and our method may therefore be used to calculate properties of arbitrarily large structures. We show that the results of our Dirac model are in quantitative agreement with tight-binding for hexagonal antidots with armchair edges. Furthermore, for a wide range of structures, we verify that a relatively narrow GAB, with only a few antidots in the unit cell, is sufficient to give rise to a transport gap

    Electronic and optical properties of graphene antidot lattices: Comparison of Dirac and tight-binding models

    Full text link
    The electronic properties of graphene may be changed from semimetallic to semiconducting by introducing perforations (antidots) in a periodic pattern. The properties of such graphene antidot lattices (GALs) have previously been studied using atomistic models, which are very time consuming for large structures. We present a continuum model that uses the Dirac equation (DE) to describe the electronic and optical properties of GALs. The advantages of the Dirac model are that the calculation time does not depend on the size of the structures and that the results are scalable. In addition, an approximation of the band gap using the DE is presented. The Dirac model is compared with nearest-neighbour tight-binding (TB) in order to assess its accuracy. Extended zigzag regions give rise to localized edge states, whereas armchair edges do not. We find that the Dirac model is in quantitative agreement with TB for GALs without edge states, but deviates for antidots with large zigzag regions.Comment: 15 pages, 7 figures. Accepted by Journal of Physics: Condensed matte

    The phonon dispersion of graphite by inelastic x-ray scattering

    Full text link
    We present the full in-plane phonon dispersion of graphite obtained from inelastic x-ray scattering, including the optical and acoustic branches, as well as the mid-frequency range between the KK and MM points in the Brillouin zone, where experimental data have been unavailable so far. The existence of a Kohn anomaly at the KK point is further supported. We fit a fifth-nearest neighbour force-constants model to the experimental data, making improved force-constants calculations of the phonon dispersion in both graphite and carbon nanotubes available.Comment: 7 pages; submitted to Phys. Rev.

    Chirality distribution and transition energies of carbon nanotubes

    Full text link
    From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency and Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n_1,n_2) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega_RBM=214.4cm^-1nm/d+18.7cm^-1. In contrast to luminescence experiments we observe all chiralities including zig-zag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab-initio calculations.Comment: 4 pages, to be published in Phys. Rev. Let

    The strength of the radial-breathing mode in single-walled carbon nanotubes

    Full text link
    We show by ab initio calculations that the electron-phonon coupling matrix element M of the radial breathing mode in single-walled carbon nanotubes depends strongly on tube chirality. For nanotubes of the same diameter the coupling strength |M|^2 is up to one order of magnitude stronger for zig-zag than for armchair tubes. For (n,m) tubes M depends on the value of (n-m) mod 3, which allows to discriminate semiconducting nano tubes with similar diameter by their Raman scattering intensity. We show measured resonance Raman profiles of the radial breathing mode which support our theoretical predictions

    Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times

    Get PDF
    [1] There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. This study examines the relation between EMIC waves and resulting relativistic electron flux levels after geomagnetic storms. A proxy for enhanced EMIC waves is developed using Los Alamos National Laboratory Magnetospheric Plasma Analyzer plasma data from geosynchronous orbit in conjunction with linear theory. In a statistical study using superposed epoch analysis, it is found that for storms resulting in net relativistic electron losses, there is a greater occurrence of enhanced EMIC waves. This is consistent with the hypothesis that EMIC waves are a primary mechanism for the scattering of relativistic electrons and thus cause losses of such particles from the magnetosphere
    • …
    corecore