5,071 research outputs found

    The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    Get PDF
    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github

    Trick Simulation Environment 07

    Get PDF
    The Trick Simulation Environment is a generic simulation toolkit used for constructing and running simulations. This release includes a Monte Carlo analysis simulation framework and a data analysis package. It produces all auto documentation in XML. Also, the software is capable of inserting a malfunction at any point during the simulation. Trick 07 adds variable server output options and error messaging and is capable of using and manipulating wide characters for international support. Wide character strings are available as a fundamental type for variables processed by Trick. A Trick Monte Carlo simulation uses a statistically generated, or predetermined, set of inputs to iteratively drive the simulation. Also, there is a framework in place for optimization and solution finding where developers may iteratively modify the inputs per run based on some analysis of the outputs. The data analysis package is capable of reading data from external simulation packages such as MATLAB and Octave, as well as the common comma-separated values (CSV) format used by Excel, without the use of external converters. The file formats for MATLAB and Octave were obtained from their documentation sets, and Trick maintains generic file readers for each format. XML tags store the fields in the Trick header comments. For header files, XML tags for structures and enumerations, and the members within are stored in the auto documentation. For source code files, XML tags for each function and the calling arguments are stored in the auto documentation. When a simulation is built, a top level XML file, which includes all of the header and source code XML auto documentation files, is created in the simulation directory. Trick 07 provides an XML to TeX converter. The converter reads in header and source code XML documentation files and converts the data to TeX labels and tables suitable for inclusion in TeX documents. A malfunction insertion capability allows users to override the value of any simulation variable, or call a malfunction job, at any time during the simulation. Users may specify conditions, use the return value of a malfunction trigger job, or manually activate a malfunction. The malfunction action may consist of executing a block of input file statements in an action block, setting simulation variable values, call a malfunction job, or turn on/off simulation jobs

    Parametric instabilities in the LCGT arm cavity

    Full text link
    We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta2_2O5_5) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.Comment: 6 pages,3 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser. (accepted

    Transport and Spectra in the Half-filled Hubbard Model: A Dynamical Mean Field Study

    Full text link
    We study the issues of scaling and universality in spectral and transport properties of the infinite dimensional particle--hole symmetric (half-filled) Hubbard model within dynamical mean field theory. One of the simplest and extensively used impurity solvers, namely the iterated perturbation theory approach is reformulated to avoid problems such as analytic continuation of Matsubara frequency quantities or calculating multi-dimensional integrals, while taking full account of the very sharp structures in the Green's functions that arise close to the Mott transitions and in the Mott insulator regime. We demonstrate its viability for the half-filled Hubbard model. Previous known results are reproduced within the present approach. The universal behavior of the spectral functions in the Fermi liquid regime is emphasized, and adiabatic continuity to the non-interacting limit is demonstrated. The dc resistivity in the metallic regime is known to be a non-monotonic function of temperature with a `coherence peak'. This feature is shown to be a universal feature occurring at a temperature roughly equal to the low energy scale of the system. A comparison to pressure dependent dc resistivity experiments on Selenium doped NiS2_2 yields qualitatively good agreement. Resistivity hysteresis across the Mott transition is shown to be described qualitatively within the present framework. A direct comparison of the thermal hysteresis observed in V2_2O3_3 with our theoretical results yields a value of the hopping integral, which we find to be in the range estimated through first-principle methods. Finally, a systematic study of optical conductivity is carried out and the changes in absorption as a result of varying interaction strength and temperature are identified.Comment: 19 pages, 12 figure

    Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors

    Full text link
    The displacement noise in the test mass mirrors of interferometric gravitational wave detectors is proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one fundamental source of dissipation in thin coatings, thermoelastic damping associated with the dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The predicted size of these effects is large enough to affect the interpretation of loss measurements, and to influence design choices in advanced gravitational wave detectors.Comment: 42 pages, 7 figures, uses REVTeX

    Effect of heat treatment on mechanical dissipation in Ta2_2O5_5 coatings

    Get PDF
    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11\,K and 300\,K. We find the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200\,K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.Comment: accepted Classical and Quantum Gravity 201

    Towards low-carbon conferencing : acceptance of virtual conferencing solutions and other sustainability measures in the ALIFE community

    Get PDF
    The latest report from the Intergovernmental Panel on Climate Change (IPCC) estimated that humanity has a time window of about 12 years in order to prevent anthropogenic climate change of catastrophic magnitude. Green house gas emission from air travel, which is currently rising, is possibly one of the factors that can be most readily reduced. Within this context, we advocate for the re-design of academic conferences in order to decrease their environmental footprint. Today, virtual technologies hold the promise to substitute many forms of physical interactions and increasingly make their way into conferences to reduce the number of travelling delegates. Here, we present the results of a survey in which we gathered the opinion on this topic of academics worldwide. Results suggest there is ample room for challenging the (dangerous) business-as-usual inertia of scientific lifestyle

    Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2

    Get PDF
    Thermal noise arising from mechanical dissipation in oxide coatings is a major limitation to many precision measurement systems, including optical frequency standards, high resolution optical spectroscopy and interferometric gravity wave detectors. Presented here are measurements of dissipation as a function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first evidence of the source of dissipation in doped Ta2O5 coatings, leading to possibilities for the reduction of thermal noise effects
    • …
    corecore