19 research outputs found

    The Product and System Specificities of Measuring Curation Impact

    Get PDF
    Using three datasets archived at the National Center for Atmospheric Research (NCAR), we describe the creation of a ‘data usage index’ for curation-specific impact assessments. Our work is focused on quantitatively evaluating climate and weather data used in earth and space science research, but we also discuss the application of this approach to other research data contexts. We conclude with some proposed future directions for metric-based work in data curation

    Build it, but will they come? A geoscience cyberinfrastructure baseline analsys

    Get PDF
    Understanding the earth as a system requires integrating many forms of data from multiple fields. Builders and funders of the cyberinfrastructure designed to enable open data sharing in the geosciences risk a key failure mode: What if geoscientists do not use the cyberinfrastructure to share, discover and reuse data? In this study, we report a baseline assessment of engagement with the NSF EarthCube initiative, an open cyberinfrastructure effort for the geosciences. We find scientists perceive the need for cross-disciplinary engagement and engage where there is organizational or institutional support. However, we also find a possibly imbalanced involvement between cyber and geoscience communities at the outset, with the former showing more interest than the latter. This analysis highlights the importance of examining fields and disciplines as stakeholders to investments in the cyberinfrastructure supporting science

    Research data management and libraries: Relationships, activities, drivers and influences

    Get PDF
    The management of research data is now a major challenge for research organisations. Vast quantities of born-digital data are being produced in a wide variety of forms at a rapid rate in universities. This paper analyses the contribution of academic libraries to research data management (RDM) in the wider institutional context. In particular it: examines the roles and relationships involved in RDM, identifies the main components of an RDM programme, evaluates the major drivers for RDM activities, and analyses the key factors influencing the shape of RDM developments. The study is written from the perspective of library professionals, analysing data from 26 semi-structured interviews of library staff from different UK institutions. This is an early qualitative contribution to the topic complementing existing quantitative and case study approaches. Results show that although libraries are playing a significant role in RDM, there is uncertainty and variation in the relationship with other stakeholders such as IT services and research support offices. Current emphases in RDM programmes are on developments of policies and guidelines, with some early work on technology infrastructures and support services. Drivers for developments include storage, security, quality, compliance, preservation, and sharing with libraries associated most closely with the last three. The paper also highlights a ‘jurisdictional’ driver in which libraries are claiming a role in this space. A wide range of factors, including governance, resourcing and skills, are identified as influencing ongoing developments. From the analysis, a model is constructed designed to capture the main aspects of an institutional RDM programme. This model helps to clarify the different issues involved in RDM, identifying layers of activity, multiple stakeholders and drivers, and a large number of factors influencing the implementation of any initiative. Institutions may usefully benchmark their activities against the data and model in order to inform ongoing RDM activity

    Unearthing the Infrastructure: Humans and Sensors in Field-Based Scientific Research

    Full text link
    Distributed sensing systems for studying scientific phenomena are critical applications of information technologies. By embedding computational intelligence in the environment of study, sensing systems allow researchers to study phenomena at spatial and temporal scales that were previously impossible to achieve. We present an ethnographic study of field research practices among researchers in the Center for Embedded Networked Sensing (CENS), a National Science Foundation Science & Technology Center devoted to developing wireless sensing systems for scientific and social applications. Using the concepts of boundary objects and trading zones, we trace the processes of collaborative research around sensor technology development and adoption within CENS. Over the 10-year lifespan of CENS, sensor technologies, sensor data, field research methods, and statistical expertise each emerged as boundary objects that were understood differently by the science and technology partners. We illustrate how sensing technologies were incompatible with field-based environmental research until researchers “unearthed” their infrastructures, explicitly reintroducing human skill and expertise into the data collection process and developing new collaborative languages that emphasized building dynamic sensing systems that addressed human needs. In collaborating around a dynamic sensing model, the sensing systems became embedded not in the environment of study, but in the practices of the scientists. Status and citation: This is the revised and accepted version, prior to publisher’s copy editing. Please quote the final version: Mayernik, Matthew S., Wallis, Jillian C., & Borgman, Christine L. (In press). Unearthing the infrastructure: Humans and sensors in field-based scientific research. Journal of Computer Supported Cooperative Work. doi: 10.1007/s10606-012-9178-

    Building Geoscience Semantic Web Applications Using Established Ontologies

    No full text
    The EarthCollab project is using the VIVO Semantic Web software suite to support the discovery of information, data, and potential collaborators within the geodesy and polar science communities. This paper discusses the ontology selection, consolidation, and reuse efforts of EarthCollab. EarthCollab’s ontology design approach heavily emphasizes ontology reuse, bringing together existing ontologies to support diverse use cases related to the discovery of geoscience information and resources. We developed a small local ontology to tie these existing ontologies together and to build appropriate geoscience-relevant connections. Five key ontology decision drivers are presented to outline EarthCollab’s ontology design process and decision points: use cases, existing systems and metadata, semantic application dependencies, external ontology characteristics, and community recommendations for good ontological modeling practices

    Immunopathogenesis of classical swine fever: role of monocytic cells

    No full text
    Virulent classical swine fever (CSF) represents an immunomodulatory viral infection that perturbs immune functions. Circulatory and immunopathological disorders include leukopenia, immunosuppression and haemorrhage. Monocytic cells – targets for CSF virus (CSFV) infection – could play critical roles in the immunopathology, owing to their production of immunomodulatory and vasoactive factors. Monocytes and macrophages (Mφ) are susceptible to virus infection, as a consequence of which prostaglandin E2 (PGE2) production is enhanced. The presence of PGE2 in serum from CSFV-infected pigs correlated with elevated PGE2 productivity by the peripheral blood mononuclear cells from these same animals. It was noted that these PGE2-containing preparations did not inhibit, but actually enhanced, lymphocyte proliferation. The proinflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 were not involved, although elevated IL-1 production could relate to lymphocyte activation. Nevertheless, IL-1 was not the sole element: infected Mφ produced lympho-stimulatory activity but little IL-1. This release of immunomodulatory factors, following CSFV infection of monocytic cells, was compared with other characteristics of the disease. Therein, PGE2 and IL-1 production was noted to coincide with the onset of fever and the coagulation disorders typical of CSF. Consequently, these factors are of greater relevance to the haemorrhagic disturbances, such as petechia and infarction, rather than the leukopenia found in CSF
    corecore