40 research outputs found

    Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-alpha stimulated proinflammatory environment

    Get PDF
    SCOPE: Monocyte adhesion to the vascular endothelium is a crucial step in the early stages of atherogenesis. This study aims to investigate the capacity of an anthocyanin (ACN) and phenolic acid (PA)-rich fraction (RF) of a wild blueberry, single ACNs (cyanidin, malvidin, delphinidin) and related metabolites (protocatechuic, syringic and gallic acid) to counteract monocytes (THP-1) adhesion to endothelial cells (HUVECs) in a tumor necrosis \u3b1 (TNF-\u3b1) mediated pro-inflammatory environment. METHODS AND RESULTS: HUVECs were incubated with different concentrations (from 0.01 to 10 \u3bcg mL-1 ) of the compounds for 24 h. Labelled monocytic THP-1 cells were added to HUVECs and their adhesion was induced by TNF-\u3b1 (100 ng mL-1 ). ACN-RF reduced THP-1 adhesion to HUVECs with a maximum effect at 10 \u3bcg mL-1 (-33%). PA-RF counteracted THP-1 adhesion at 0.01, 0.1 and 1 \u3bcg mL-1 (-45%, -48.7% and -27.6%, respectively), but not at maximum concentration. Supplementation with gallic acid reduced THP-1 adhesion to HUVECs with a maximum effect at 1 \u3bcg mL-1 (-29.9%), while malvidin-3-glucoside and syringic acid increased the adhesion. No effect was observed for the other compounds. CONCLUSION: These results suggest that ACNs/PA-RF may prevent atherogenesis while the effects of the single ACNs and metabolites are controversial and merit further exploration

    Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals

    No full text
    Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation

    Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes.

    No full text
    One type of carbon nanotubes (CNTs) (MWCNT-7, from Mitsui) has been classified as probably carcinogenic to humans, however insufficient data does not warrant the same classification for other types of CNTs. Experimental data indicate that CNT exposure can result in oxidative stress and DNA damage in cultured cells, whereas these materials appear to induce low or no mutagenicity. Therefore, the present study aimed to investigate whether in vitro exposure of cultured airway epithelial cells (A549) to multi-walled CNTs (MWCNTs) could increase the DNA repair activity of oxidatively damaged DNA and drive the cells toward replicative senescence, assessed by attrition of telomeres. To investigate this, H2O2 and KBrO3 were used to induce DNA damage in the cells and the effect of pre-exposure to MWCNT tested for a change in repair activity inside the cells or in the extract of treated cells. The effect of MWCNT exposure on telomere length was investigated for concentration and time response. We report a significantly increased repair activity in A549 cells exposed to MWCNTs compared to non-exposed cells, suggesting that DNA repair activity may be influenced by exposure to MWCNTs. The telomere length was decreased at times longer than 24h, but this decrease was not concentration dependent. The results suggest that the seemingly low mutagenicity of CNTs in cultured cells may be associated with an increased DNA repair activity and a replicative senescence, which may counteract the manifestation of DNA lesions to mutations

    Hepatic hazard assessment of silver nanoparticle exposure in healthy and chronically alcohol fed mice.

    No full text
    Silver (Ag) nanoparticles (NPs) are currently among one of the most widely used nanomaterials. This in turn, implies an increased risk of human and environmental exposure. Alcohol abuse is a global issue with millions of people in the general population affected by the associated adverse effects. The excessive consumption of alcohol is a prominent cause of chronic liver disease which manifest in multiple disorders. In this study, the adverse health effects of Ag NP exposure were investigated in models of alcoholic hepatic disease in vitro and in vivo. The data showed that Ag NP induced hepatic health effects were aggravated in the alcohol pretreated mice in comparison to controls with regards to an organ specific inflammatory response, changes in blood biochemistry, acute phase response and hepatic pathology. In addition, alcoholic disease influenced the organ’s ability for recovery post-NP challenge. Additionally, it is demonstrated that the in vivo data correlated well with in vitro findings where ethanol pretreatment of hepatocytes resulted in significantly increased inflammatory response post-Ag NP exposure. To the best of our knowledge this is the first study of its kind to investigate nano-sized material-induced hepatic pathology in models representative of susceptible individuals (those with pre-existing alcohol liver disease) within the population. This is an area of research in the field of nanotoxicology, and in particular with regard to NP risk assessment that is almost entirely overlooked

    Hepatic toxicity assessment of cationic liposome exposure in healthy and chronic alcohol fed mice.

    No full text
    The utilisation of nanoparticles as the means of targeted delivery of therapeutics and/or imaging agents could greatly enhance the specific transport of biologically active payloads to target tissues while avoiding or reducing undesired side-effects. To allow for this to become a reality, the question of potential toxicological effects needs to be addressed. In the present investigation, a cationic liposome with prospective for medical applications was constructed and thoroughly assessed for any material-induced hepatic adverse effects in vivo − in healthy and alcoholic hepatic disease models and in vitro − (HepG2 cells). The data demonstrated that intravenous injection of liposomes did not cause any significant in vivo hepatic toxicity (inflammation, alterations in blood parameters, anti-oxidant depletion, acute phase response and histopathology) at doses of 200 μg per mouse in either healthy or chronically alcohol fed mice. Additionally, the in vitro material-induced adverse effects (cytotoxicity, inflammation or albumin secretion) were all also minimal. The data from this study demonstrated that the intravenous injection of cationic liposomes does not cause hepatic toxicity. This investigation is important as it investigates the toxicity of a nano-sized material in a model of alcoholic hepatic disease in vitro and in vivo. This is an area of research in the field of nanotoxicology that is currently almost entirely overlooked

    Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    No full text
    Purpose: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation.Methods: THP-1-derived macrophages were incubated with fatty acids (500 \u3bcM oleic/palmitic acid, 2:1 ratio) and different concentrations (from 0.05 to 10 \u3bcg mL 121) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red.Results: Lipid accumulation was reduced at all concentrations of the ACN-rich fraction tested with a maximum reduction at 10 \u3bcg mL 121 ( 1227.4 %; p < 0.0001). The PA-rich fraction significantly reduced the lipid accumulation only at the low concentrations from 0.05 \ub5g mL 121 to 0.3 \ub5g mL 121, with respect to the control with fatty acids. Supplementation with pure ACN compounds (malvidin and delphinidin-3-glucoside and its metabolic products (syringic and gallic acid)) reduced lipid accumulation especially at the low concentrations, while no significant effect was observed after cyanidin-3-glucoside and protocatechuic acid supplementation.Conclusions: The results demonstrated a potential role of both the ACN- and PA-rich fractions and single compounds in the lipid accumulation also at concentrations close to that achievable in vivo

    Inhalation of House Dust and Ozone Alters Systemic Levels of Endothelial Progenitor Cells, Oxidative Stress, and Inflammation in Elderly Subjects.

    No full text
    Ambient air pollution including ozone and especially particulate matter represents important causes of cardiovascular disease. However, there is limited knowledge on indoor air dust with respect to this risk and the potential interactions between dust and ozone. Here, we exposed 23 healthy elderly subjects for 5.5 h, to either clean air, house dust at 275 µg/m3 (diameter < 2.5 µm), ozone at 100 ppb or combined house dust and ozone in a double-blinded randomized cross-over study. The combined house dust and ozone exposure was associated with a 48% (95% CI 24%–65%) decrease as compared with the clean air exposure, in CD34+KDR+ late endothelial progenitor cells (EPCs) per leukocyte in the blood shortly after exposure, whereas none of the single exposures resulted in a significant effect. The combined exposure also increased reactive oxygen species production capacity in granulocytes and monocytes as well as an up-regulation of interleukin-8 mRNA levels in leukocytes. Ozone alone reduced the gene expression of tumor necrosis factor and C-C motif chemokine ligand 2, while dust alone showed no effects. The combined exposure to house dust and ozone also reduced levels of oxidized purines in DNA consistent with concomitant up-regulation of mRNA of the repair enzyme 8-oxoguanine DNA glycosylase. The reduction in late EPCs can be an indicator of cardiovascular risk caused by the combination of pulmonary oxidative stress induced by ozone and the inflammatory potential of the house dust. These data were corroborated with in vitro findings from exposed human macrophages and endothelial cells
    corecore