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ABSTRACT  13 

Scope: Monocyte adhesion to the vascular endothelium is a crucial step in the early stages of atherogenesis. This study 14 

aims to investigate the capacity of an anthocyanin (ACN) and phenolic acid (PA)-rich fraction (RF) of a wild blueberry, 15 

single ACNs (cyanidin, malvidin, delphinidin) and related metabolites (protocatechuic, syringic and gallic acid) to 16 

counteract monocytes (THP-1) adhesion to endothelial cells (HUVECs) in a tumor necrosis α (TNF-α) mediated pro-17 

inflammatory environment.  18 

Methods and results: HUVECs were incubated with different concentrations (from 0.01 to 10 μg mL-1) of the compounds 19 

for 24 h. Labelled monocytic THP-1 cells were added to HUVECs and their adhesion was induced by TNF-α (100 ng 20 

mL-1). ACN-RF reduced THP-1 adhesion to HUVECs with a maximum effect at 10 μg mL-1 (-33%). PA-RF counteracted 21 

THP-1 adhesion at 0.01, 0.1 and 1 μg mL-1 (-45%, -48.7% and -27.6%, respectively), but not at maximum concentration. 22 

Supplementation with gallic acid reduced THP-1 adhesion to HUVECs with a maximum effect at 1 μg mL-1 (-29.9%), 23 

while malvidin-3-glucoside and syringic acid increased the adhesion. No effect was observed for the other compounds.  24 

Conclusion: These results suggest that ACNs/PA-RF may prevent atherogenesis while the effects of the single ACNs 25 

and metabolites are controversial and merit further exploration.  26 

 27 

Key words: wild blueberry, anthocyanins, metabolites, atherogenesis, cell culture, adhesion  28 
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1-INTRODUCTION 29 

Endothelial cells, which cover the luminal surface of all blood vessels, plays a pivotal role in the control of vascular 30 

homeostasis by synthesizing and releasing vasoactive substances. Moreover, it acts as a semipermeable barrier that 31 

controls blood–tissue exchange of fluids, nutrients, and metabolic wastes from the intravascular compartment to the 32 

interstitium.The process of atherosclerosis is characterized with increasing endothelial dysfunction, inflammation, 33 

oxidative stress and impairment of the vascular homeostasis [1]. The expression of many cytokines, chemotactic factors, 34 

selectins, vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) promote the 35 

recruitment of monocytes to the intima of blood vessels [2]. Adhesion molecule expression is induced by pro-36 

inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor-α (TNF-α) [3]. 37 

Polyphenol-rich foods seem to prevent atherosclerosis by reducing oxidative stress, inflammatory response, lipid 38 

accumulation, macrophage and foam cell formation. Berries, like blueberries, are a natural and rich source of polyphenols, 39 

in particular anthocyanins (ACNs; e.g. cyanidin, delphinidin, and malvidin) and phenolic acids (i.e. chlorogenic acid) [4]. 40 

ACNs may positively modulate inflammatory status by influencing the expression and production of pro- and anti-41 

inflammatory cytokines, but may also down-regulate the pathways involved in the activation of inflammatory processes 42 

such as nuclear factor-kB (NF-kB) [5]. Several studies have shown a protective effect of polyphenols against TNF-α 43 

induced inflammation [6-8]. For example, Youdin et al., [6] reported that ACNs from blueberries and cranberries 44 

downregulated the inflammatory response in human microvascular endothelial cells. Speciale and colleagues [7] showed 45 

that cyanidin-3-glucoside (Cy-3-glc) counteracted the inflammation in endothelial cells, while Lodi and co-workers [8] 46 

documented the capacity of quercetin metabolites in attenuating TNF- induced endothelial dysfunction.   47 

It is important to underline that the effects of ACNs and phenolic acids are not limited to the modulation of 48 

inflammation. These compounds have been demonstrated to affect several functions directly or indirectly related to 49 

endothelial function and inflammation such as oxidative stress, capillary permeability, platelet aggregation, thrombus 50 

formation, nitric oxide production and atherogenesis [9-15]. In this regard, we recently documented that certain ACNs 51 

and the phenolic acid (PA)-rich fraction (RF) were able to counteract lipid accumulation in macrophages derived from 52 

monocytic THP-1 cells; however, when considering the single compounds, the effects were concentration and compound 53 

dependent [16]. While delphinidin (Dp), malvidin-3-glucoside (Mv-3-glc) and their corresponding metabolites (gallic 54 

acid; GA and syringic acid; SA) showed a reduction in lipid accumulation, no effect was observed for Cy-3-glc and 55 

protocatechuic acid (PrA) [16]. The aim of the present study was to test the anti-atherogenic effect of the same fractions 56 

(ACN and PA-RF), single ACNs (Mv, Dp and Cy-3-glc) and their metabolites (SA, GA and PrA). The anti-atherogenic 57 

process was assessed by mimicking the capacity of these bioactives to counteract monocyte adhesion to endothelial cells 58 

following a stimulation of an inflammatory process mediated by TNF-.  59 
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2. MATERIALS AND METHODS 60 

2.1 Chemicals 61 

Human Endothelial Cells Basal Medium and Human Endothelial Cells Growth Supplement were from Tebu-Bio 62 

(Magenta, Italy). HEPES, Sodium Pyruvate, Gentamin, RPMI-1640, trypsin-EDTA were obtained from Life 63 

Technologies (Monza Brianza, Italy). Standards of Cy, Dp, Mv, petunidin (Pt) and peonidin (Pe)-3-O-glc, Cy- and Pt-3-64 

O-arabinoside (ara), Cy-3-O-galactoside (gal), were purchased from Polyphenols Laboratory (Sandes, Norway). Standard 65 

of GA, PrA, SA, chlorogenic, caffeic and ferulic acids, glucose, fructose, Hanks balanced salt solution, fetal bovine serum 66 

(FBS), tumor necrosis factor α (TNF-α) and Triton X-100 were from Sigma-Aldrich (St. Louis, MO, USA). Hydrochloric 67 

acid, methanol, ethanol, acetonitrile, triethylamine, phosphoric acid, trifluoroacetic acid (TFA) and ethyl acetate were 68 

from Merck (Darmstadt, Germany). Water was obtained from Milli-Q apparatus (Millipore, Milford, MA, USA). Freeze-69 

dried wild blueberry (WB) powder, standardized at 1.5% total ACNs, was kindly provided by Future-Ceuticals Company 70 

(Momence, IL, USA). 71 

2.2 Preparation and characterization of the anthocyanin, phenolic -rich fraction from the WB powder 72 

Three different fractions were obtained from freeze-dried WB powder: 1- ethyl acetate soluble fraction (containing mainly 73 

chlorogenic acid; PA-RF); 2- methanol soluble fraction (containing mainly ACNs; ACN-RF); 3- water soluble fraction 74 

(WS), containing sugar and organic acids. The extraction was performed following the method described by Wrolstad 75 

[17] with some modifications. Briefly, the WB powder (10 mg) was suspended in water (10 mL), sonicated for 10 min, 76 

and centrifuged at 3000 × g for 10 min. Three ml of supernatant was loaded into a solid-phase extraction (SPE)-cartridge 77 

(Strata-X 300 mg/3 mL, Phenomenex, Torrence, CA, USA). The elution of WS, PHE and ACN-rich fractions was carried 78 

out respectively with HCl 0.01 N (5 mL), ethyl acetate (10 mL) and methanol (5 mL) containing 0.1% HCl. The WS 79 

fraction was discarded, while the other fractions were dried under vacuum with rotavapor (RC Jouan 10, Jouan, 80 

Winchester, VA, USA) at 20°C for ACNs, 40°C for PHEs. The residues were dissolved in acidified methanol (HCl 0.05 81 

mM), and stored at -20°C until use. The analysis of ACN and PA of the two fractions, as well as other bioactives (i.e. 82 

vitamins, carotenoids, fatty acids, fiber and minerals), was carried out as previously described [16, 18]. Seventeen 83 

different ACNs, predominantly conjugated to glucose and galactose, were detected in the ACN-RF as previously reported 84 

in details [16]. The total ACN content was 29.9 ± 5.2 mg mL-1 and constituted predominantly of Mv glycosides (about 85 

14.4 mg mL-1), Cy glycosides (about 4.8 mg mL-1), and Dp glycosides (about 4.5 mg mL-1), followed by petunidin and 86 

peonidin glycosides [16]. No phenolic compounds were found in the ACN-RF.  87 

PA-RF contained mainly chlorogenic acid (13.1 ± 2.5 mg mL-1), followed by traces of caffeic and ferulic acids as 88 

previously reported [16]. No conjugated sugars and ACNs were detectable.   89 
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In both of the fractions, no carotenoids, vitamin C, vitamin A and E or fibers were detected. Traces of fatty acids (palmitic, 90 

stearic, oleic, linoleic and linolenic acids) and minerals (calcium, sodium and zinc) were present as previously reported 91 

[19].    92 

2.3 Preparation of pure anthocyanins and metabolites 93 
 94 
A stock solution of standards of Mv, Cy and Dp-3-O-glc, as well as their correspondent metabolic products as SA, PrA 95 

and GA respectively, was prepared. Lyophilized standards (10 mg) were dissolved in 10 mL of acidified methanol (HCl 96 

0.05 mM). Aliquots (1 mL) were dried under nitrogen and subsequently dissolved in 50 µL acidified methanol (HCl 0.05 97 

mM), quantified by spectrophotometric analysis and stored at -20°C until use. We selected these ACNs because they were 98 

the compounds absorbed and detectable in plasma after consumption of a single portion of blueberry as previously 99 

reported [20]. Moreover, we tested their corresponding metabolic products since ACNs, in vivo, are quickly metabolized 100 

[21].  101 

2.4 HUVEC culture 102 

The human umbilical vein endothelial cells (HUVECs) are primary cells originally from the endothelium of veins from 103 

the umbilical cord. When cultured, cells form a monolayer similar to the endothelial cells in vivo, therefore they are 104 

commonly used as an in vitro model for the study of endothelial function [22]. HUVECs were cultured in endothelial cell 105 

growth medium kit containing 2% serum at 37°C and 5% CO2. 106 

2.5 THP-1 cell culture 107 

The monocytic THP-1 cell line was purchased from American Type Culture Collection (Manassas, VA, USA). THP-1 108 

cells are non-adherent cells originally cultured from the peripheral blood of a 1 year child with acute monocytic leukemia 109 

[23]. According to the authors, the cells maintained their monocytic characteristics for over 14 months [23]. In the present 110 

study, the cells were maintained for up to 3 months. THP-1 cells can model monocyte-macrophage behavior during the 111 

atherogenesis process. THP-1 cells were cultured in complete RPMI cell media (RPMI-1640 medium supplemented with 112 

1% HEPES, 1% sodium pyruvate, 0.1% gentamicin, and FBS to a final concentration of 10%) at 37°C and 5% CO2. 113 

2.6 Cell viability as indicated by trypan blue assay and by MTT assay 114 

The viability assay was carried out for each compound (ACN- and PA-rich fraction, the single ACNs and corresponding 115 

metabolites) and for each concentration. Two hundred microliters of HUVECs (2x104 cells) in triplicate were added onto 116 

0.1% gelatin pre-coated 96-well plate and incubated for 24 h at 37°C and 5% CO2, in order to allow the cell adhesion to 117 

the surface of the plate. Media was removed and 200 µL of new complete media (containing each bioactive compound 118 

from 0.01 to 10 µg mL-1) was added. After 24 h incubation, trypan blue assay was performed in triplicate.  119 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay was performed on 120 

HUVECs treated with the maximum concentration for ACN- and PA-RF, single ACNs and metabolites. Two hundred 121 



6 

 

microliters of HUVECs (2x104 cells) in quintuplicate were added onto 0.1% gelatin pre-coated 96-well plate and 122 

incubated for 24 h at 37°C and 5% CO2. Media was removed and 200 µL of new complete media containing each bioactive 123 

compound at 10 µg mL-1 and 0.1% Triton X-100 (positive control) was added. After incubation at 37°C for 24 h, the 124 

medium was removed and cells washed twice with Hank balanced salt solution. MTT substrate (100 µL) was prepared in 125 

a physiological balanced solution and added into each well at a final concentration of 0.5 mg mL-1, and incubated for 2 h 126 

at 37°C with 5% CO2. Next, 100 µL of acidic absolute isopropanol (0.1 N HCl) was added to each well in order to dissolve 127 

formazan crystals. The quantity of formazan (directly proportional to the number of viable cells) was measured after 15 128 

min of incubation at room temperature by recording changes in absorbance at 570 nm (reference wavelength of 630 nm) 129 

using a plate reading spectrophotometer (mod. F200 Infinite, TECAN Milan, Italy). The cell viability was calculated as 130 

% viability= (sample absorbance/control absorbance) x 100. 131 

2.7 Adhesion of monocytes to HUVECs   132 

HUVECs 2x104 in 200 µL were aliquoted in quintuplicate on 0.1% gelatin pre-coated 96-well black plate and maintaned 133 

at 37°C and 5% CO2. After 24 h, media was removed and 200 μL of new media, containing different concentrations of 134 

bioactive compounds, was added. The ACN (calculated considering the total ACNs concentration) and PA-RF (calculated 135 

considering the chlorogenic acid concentration), as well as the single ACNs (Mv, Cy and Dp-3-glucoside) and their 136 

corresponding metabolites (SA, PrA and GA, respectively) were tested. All these compounds were prepared in acidified 137 

methanol (0.05 mM HCl) and then diluted in the culture media before use. Concentrations of ACN- and PA-RF, of the 138 

single ACNs and metabolite standards used were 0.01, 0.1, 1 and 10 µg mL-1. These concentrations derived from a 139 

previous study in which we documented the capacity of these compounds to counteract lipid accumulation in THP-1 140 

derived macrophages [16]. Cells were incubated for 24 h at 37°C and 5% CO2. We did not observe precipitation of ACN-141 

rich material from the medium during the 24 h exposure period. After incubation, the medium was removed. THP-1 cells 142 

(2x106) were re-suspended in 1 mL serum free RPMI cell media (RPMI-1640 medium supplemented with 1% HEPES, 143 

1% sodium pyruvate, 0.1% gentamicin) and labelled with 1 µM CellTrackerTM Green CMFDA (5-144 

Chloromethylfluorescein Diacetate, Invitrogen, USA) for 30 min at 37°C and 5 % CO2. After labelling, THP-1 cells were 145 

rinsed twice with complete RPMI cell media and re-suspended in HUVEC media at a density of 2x105 cells mL-1.  146 

One hundred microliter of THP-1 cells and 100 µL of TNF-α (100 ng mL-1, final concentration in the well) in HUVEC 147 

media  were added to HUVECs and incubated for 24 h at 37°C and 5 % CO2. TNF-α induces a pro-inflammatory status 148 

and promotes THP-1 cell adhesion. After 24 h, cells were rinsed twice with Hank solution and the fluorescence 149 

(excitation: 485 nm, emission: 538 nm) was measured in a fluorescence spectrophotometer (mod. F200 Infinite, TECAN 150 

Milan, Italy) and the fold increase compared to the control (without stimulation with TNF-α or bioactive compounds) was 151 
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calculated. The increase of absorbance is dependent to the number of labelled-THP-1 cells attached to the HUVECs. The 152 

experiment was repeated on three independent days. 153 

2.8 Statistical analysis 154 

The statistical analysis was performed by means of STATISTICA software (Statsoft Inc., Tulsa, OK, USA). Analysis of 155 

variance (ANOVA) was used to assess the effect of the different concentrations of ACN and PA compounds (fractions 156 

and single ACNs/metabolites) on HUVECs viability and on THP-1 adhesion to HUVECs following stimulation with 157 

TNF-α. Post-hoc analysis of differences between treatments was assessed by the Least Significant Difference (LSD) test 158 

with p ≤ 0.05 as level of statistical significance. Data are presented as mean ± standard error of mean.  159 

3. RESULTS  160 

3.1 Effect of anthocyanin and phenolic-rich fractions and single compounds on cell viability 161 

The viability of cells was not affected by exposure to any of the test compounds (from 0.01 to 10 µg mL-1) for 24 h as 162 

assessed by the trypan blue exclusion assay. Data reported in Figure 1A refers to the maximum concentration tested. 163 

Additional MTT assay was performed confirming the all the fractions (ACN and PHE) and the single compounds tested 164 

were not cytotoxic at the maximun concentration of 10 µg mL-1, while the addition of 0.1% Triton X-100 significantly 165 

(p<0.0001) affected cell’s viability. Both the tests provided comparable results, showing that the cell viability was above 166 

90% (Figure 1B). 167 

3.3 Effect of anthocyanin and phenolic-rich fractions on THP-1 adhesion to HUVECs  168 

To evaluate the effect of ACN- and PA-RF on the capacity to counteract monocytes adhesion to endothelial cells in a 169 

TNF-α stimulated pro-inflammatory environment, HUVECs were incubated with 0-10 μg mL-1 of each fraction for 24 h. 170 

Subsequently, cells were cocultured with THP-1 and a pro-inflammatory stimulus was induced with TNF-.  171 

On the whole, we observed that adiministration of 100 ng mL-1 of TNF- induced a 2-fold increase (p<0.0001) in 172 

monocytes adhesion to endothelial cells compared to the control cells (TNF-α-free control).  173 

The effect of the ACN-RF on THP-1 adhesion to HUVECs is reported in Figure 2A. The ACN-RF reduced THP-1 174 

adhesion at all concentrations tested with respect to the control treatment with TNF-α, but not with respect to the TNF-α-175 

free control. The maximum reduction was observed for the concentration at 10 µg mL-1 (-33%, p=0.002). The effect of 176 

PA-RF on THP-1 adhesion to HUVECs is reported in Figure 2B. Incubation with PA-RF significantly reduced the 177 

attachment of THP-1 cells to HUVECs at concentrations of 0.01, 0.1 and 1 µg mL-1 (-45%, -48.7% and -27.6%, 178 

respectively) with respect to the TNF-α exposed cells, but not with respect to TNF-α-free control. No significant effect 179 

was observed at the maximum concentration (10 µg mL-1).  180 

3.4 Effect of the pure anthocyanins and metabolites on THP-1 adhesion to HUVECs  181 



8 

 

To identify the potential ACN and/or metabolite involved in the modulation of THP-1 attachment to HUVECs, we tested 182 

the effects of single compounds. In particular, the effect of Cy, Dp and Mv-3-glc (the main three ACNs detectable in the 183 

ACN-RF) and the effect of their corresponding metabolic products (PrA, GA and SA, respectively) was evaluated. 184 

HUVECs were treated with 0-10 μg mL-1 of each ACN and metabolites for 24 h. Subsequently, HUVECs were cocultured 185 

with THP-1and a pro-inflammatory stimulus was induced with TNF-.  186 

On the whole, we observed that adiministration of 100 ng mL-1 of TNF- induced a 2-fold increase (p<0.0001) in 187 

monocytes adhesion to endothelial cells compared to the control cells (TNF-α-free control). The incubation of HUVECs 188 

with Cy-3-glc and Dp-3-glc did not prevent the adhesion of THP-1 cells following the stimulation of TNF-  (Figure 3A 189 

and B).  The administration of Mv-3-glc prior the inflammatory stress significantly exacerbated the adhesion of THP-1 190 

cells to HUVECs both at the low and at high concentrations (p<0.0001). This effect was not concentration dependent and 191 

the maximum adhesion was observed at 10 µg mL-1 (+39.5%; p=0.001) compared to TNF- (Figure 3C).  192 

The effects of the ACN metabolites on THP-1 adhesion to HUVECs are reported in Figure 4 (A-C). GA, the metabolic 193 

product of Dp-3-glc, showed to decrease  the adhesion of THP-1 cells to HUVECs at all the concentrations with a 194 

maximum reduction at 1 µg mL-1 (-29.9%; p=0.0002) and 10 µg mL-1 (-20.7%; p=0.007) (Figure 4A). On the contrary, 195 

SA (the metabolite of Mv-3-glc) significantly increased the adhesion of THP-1 cells to HUVECs both at the low and high 196 

concentrations (Figure 4B). This effect was not concentration dependent and the maximum adhesion was observed at 10 197 

µg mL-1 (+51%; p<0.0001) compared to TNF- (Figure 4B).  198 

The incubation of HUVECs with PrA (the metabolic product of Cy-3-glc), had not effect on THP-1 adhesion to HUVECs 199 

except for the concentration at 0.1 µg mL-1. Surprisingly, we documented a significant increase (+55%; p=0.0002) in the 200 

monocytes adhesion to endothelial cells (Figure 4C).  201 

4. Discussion 202 

The utilization of in vitro co-culture model systems with different cell types has the advantage of mimicking cell to cell 203 

interaction and signaling that are present in vivo. Thus, these systems reflect the physiological environment and specific 204 

mechanisms of action, although they may not describe the complete causal pathway from exposure to disease endpoint. 205 

In the present study, we screened for the first time the capacity of a wide range of polyphenols (mix or single compounds) 206 

to counteract the adhesion of monocytes to endothelial cells in a TNF-α stimulated pro-inflammatory environment. In 207 

particular, two bioactive fractions (ACN- and PA-RF) obtained from a WB powder, single ACNs (Mv, Dp, and Cy-3-glc, 208 

the main ACNs detected in WB) and corresponding metabolites (SA, GA and PrA) were tested.  209 

In the context of monocyte recruitment, cell adhesion molecules such as VCAM-1 and ICAM-1 seem to play a pivotal 210 

role. Their expressions are regulated in part by NF–kB and pro-inflammatory cytokines such as IL-1β or TNF-α. Once 211 
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adherent to the endothelial surface, the mononuclear blood cells receive chemoattractant signals that stimulate them to 212 

migrate to the intima, which may initiate the atherosclerotic process [24]. It has been shown that TNF has an autocrine 213 

loop during differentiation of monocytes to macrophages, which affects the expression of integrins [25]. TNF also binds 214 

to fibronectin and attachment of monocytes to this extracellular matrix requires functionally activated β1 integrins [26]. 215 

However, HUVECs only were treated with ACNs in the present experiment; thus signalling factors to alter the expression 216 

of integrins on THP-1 cells must originate from ACN-treated HUVECs. It seems unlikely that any signalling factors from 217 

ACN-treated HUVECs should able to overrule the strong stimulus from the added TNF to the culture medium. HUVECs 218 

have high expression of integrin α5β1 (i.e. fibronectin receptor), α2β1 (laminin/collagen receptor) and less expression of 219 

αVβ3 (i.e. vitronectin receptor) [27-28]. These integrins on endothelial cells are more likely to be involved in angiogenesis 220 

and remodelling, due to interaction with the extracellular matrix and vascular smooth muscle cells.   221 

The effect of ACN- and PA-RF in the prevention of monocytes adhesion to endothelial cells is incompletely investigated. 222 

In our experimental conditions, ACN-RF decreased that attachment of THP-1 cells to HUVECs in line with the few 223 

observations reported in literature. Kuntz et al., [29] reported that the administration of an anthocyanin-rich grape extract 224 

(about 25 µg mL-1, mainly malvidin-3-glucoside) was able to prevent TNF-α-induced leukocyte adhesion to HUVECs 225 

and pro-inflammatory response in a transwell epithelial-endothelial co-culture system. Medda et al., [30] documented that 226 

the supplementation with a black raspberry ACN-rich extract (100 µg mL-1) was able to abrogate adhesion of human 227 

U937 monocytes to human esophageal microvascular endothelial cells that were activated with TNF-α/IL-1β, whereas 228 

increased adhesion was observed in primary human intestinal microvascular endothelial cells.  229 

Regarding PA-RF, in which chlorogenic acid was the main bioactive constituent, we observed that the supplementation 230 

reduced the THP-1 monocytes binding to endothelial cells at low and medium concentrations, while no effect was 231 

observed at high concentration (10 µg mL-1 equivalent to 28.2 μM chlorogenic acid). This result is in contrast with Chao 232 

et al., [31] who showed that pre-treatment with a phenolic-rich extract from purple sweet potato leaf extract (100 μg mL-233 

1) lowered TNF-α-induced monocyte adhesion to human aortic endothelial cells. In a previous study, Chang et al., [32] 234 

documented a reduction in the adhesion of human monocyte cells (U937) to IL-1β-treated HUVECs after supplementation 235 

with 25 and 50 µmol L-1 of chlorogenic acid. These concentrations are unlikely to be achieved after oral ingestion of 236 

ACN-rich food items due to their rapid transformation driven by phase II enzymes and gut microbiota into metabolic 237 

products. Our novel results support the notion that ACN- and PA-RF can reduce the adhesion of monocytes to HUVECs 238 

at concentrations (0.01–0.1 μg mL−1) that are close to that achievable in vivo especially from phenolic acids and ACN 239 

metabolites [33-34]. This protection may be attributed to the synergy between ACNs and/or PAs, and/or other bioactive 240 

compounds contained, even in very small amounts, in the fractions. 241 



10 

 

When considering the single molecules, the results are mixed and compound-dependent. GA reduced THP-1 242 

attachment to HUVECs at all the concentrations tested in line with the observations reported by Hidalgo et al., [35] who 243 

showed a reduction in monocytes recruitment to EA.hy 926 cells (cell line derived from HUVECs) following GA (≥10 244 

μM) supplementation. On the contrary, Dp-3-glc and Cy-3-glc did not counteract monocyte adhesion to HUVECs 245 

following an inflammatory stimulus, while Mv-3-glc, SA and PrA (for some concentrations) exacerbated the pro-246 

inflammatory process by increasing the adhesion of monocytes to endothelial cells. These results differ from other 247 

published observations in the literature. In fact, a growing body of evidence supports the role of PrA in the modulation of 248 

several biological pathways, including also the antioxidant and inflammatory response [36]. For example, Wang et al., 249 

[37] showed that PrA inhibited monocyte adhesion to TNF-α-activated mouse aortic endothelial cells, associated with the 250 

inhibition of VCAM-1 and ICAM-1 expression. Zhou et al., [38] showed that Pr aldehyde (0.15-1.35 mM) inhibited TNF-251 

α-induced upregulation of monocyte (U937) cell adhesion to HUVECs, and downregulated the cell surface expression of 252 

VCAM-1 and ICAM-1. Lately, Krga et al., [39] tested the effects of 5 different ACNs and gut metabolites, including PrA 253 

(from 0.1 to 2 µM), showing their capacity to decrease the adhesion of TNF- stimulated monocytes to HUVECs, but 254 

these effects were not mediated by E-selectin, ICAM-1 and VCAM-1.  The discrepancies between these results could be 255 

dependent for example on type of cell, concentration of phenolic compounds, extent of exposure to TNF-α and 256 

supplementation of the target compound and/or pro-inflammatory stimulus during the experiment.  257 

The protective effect of polyphenols and polyphenol-rich extracts against inflammation has been widely 258 

documented using in vitro studies with single cell lines [40-45]. For example, Warner et al., [45] recently explored the 259 

effects of 20 different phenolics and precursors (0.01-100 µM) on the capacity to reduce the secretion of VCAM-1 in 260 

TNF-α-activated HUVECs. The authors documented that 4 out of 20 compounds were effectives against this process and 261 

that the most active compound, able to decrease VCAM-1 secretion in a concentration dependent manner, was PrA. 262 

Esposito et al., [46] reported the capacity of anthocyanin-rich fraction (50-150 µg mL-1) to blunt the lipopolysaccharide-263 

induced gene expression response of cytokines and other components in the inflammation response in murine RAW 264.7 264 

macrophages. Hoosmand et al., [47] reported that the supplementation with dried plum polyphenols (from 0.1 to 1000 µg 265 

mL-1) reduced LPS-induced inflammatory response in macrophage cells, while Marinvic et al., [48] documented an anti-266 

inflammatory effect of green tea catechins (1.4, 2, 3 and 30 μM) in isolated and cultured human neutrophils. Huang et al., 267 

[49] documented that a pre-treatment of endothelial cells with malvidin-3-glucoside and galactoside (1-100 µM) inhibited 268 

the TNF-α-induced inflammatory process. Zhu et al., [50] reported that a purified ACN mixture of Dp-3-Ο-β-glc and Cy-269 

3-Ο-β-glc at very high concentrations (from 0.1 to 50 mg mL-1) was able to inhibit interleukin-6 and interleukin-1β-270 

induced C-reactive protein production in human hepatocellular liver carcinoma cell line (HepG2) in a concentration-271 

dependent manner.  272 
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The molecular mechanism underlying the anti-inflammatory activity of polyphenols is not completely understood and 273 

there are several important points to consider. First of all, the very high concentrations that are usually used in vitro are 274 

very difficult to reach in vivo. Thus, it is difficult to interpret the results and it does not help to understand a possible 275 

biological effect. In the present study, we tried to assess realistic and physiological concentrations supporting their 276 

bioactivity at the low concentrations. Second, different compounds may exert dissimilar biological activity probably 277 

depending on their chemical structure. The pH of the culture media may have a dramatic impact on ACNs structure 278 

leading to the formation of derivatives such as hemiacetal and chalcone forms, but also on their metabolites, the bioactivity 279 

of which is unknown but not excluded. Some studies reported that the anti-inflammatory effect of ACNs appears to be 280 

strongly influenced by their hydroxylation and methylation patterns as well as the presence of a sugar moiety. Several in 281 

vitro studies indicate that ACNs with an ortho-dihydroxyphenyl structure on the B-ring, like Cy and Dp, has a potential 282 

anti-inflammatory property. In particular, anthocyanidins such as pelargonidin, peonidin, which contain a single hydroxyl 283 

group, and Mv, with two methyl groups on the B-ring, showed no anti-inflammatory effect, while Cy with two hydroxyl 284 

groups and Dp with three hydroxyl groups on the B-ring exhibited a strong anti-inflammatory activity [51]. However, the 285 

pro-inflammatory effect we observed after Mv-3-glc supplementation cannot easily be explained simply through the 286 

chemical structure of the ACNs since other studies have demonstrated an anti-inflammatory effect [52-53]. It is, however, 287 

surprising and intriguing to observe the same pro-inflammatory activity with SA, which has two methyl groups on the B-288 

ring similar to the native Mv-3-glc. An analogue pro-inflammatory activity was also documented by Karlsen and 289 

colleagues [54] in human monocytic cell line (U937) following supplementation (50 µmol L-1) with Dp and petunidin 290 

anthocyanidins. The same authors, in a previous study, observed that dietary plants and phytochemicals, including 291 

polyphenols, have ability to either induce or inhibit NF-kB in the same cell type, depending on the concentrations used 292 

[55]. This phenomenon is called “hormesis” to describe biphasic dose response curve of phytochemicals, including 293 

polyphenols, in a wide range of biological models. It has been observed that some concentrations of these compounds 294 

can induce mild cellular stress responses, including oxidative and inflammatory response, upon their absorption [56]. This 295 

could explain the results obtained not only with Mv and SA but also with PrA that showed, in one case, a pro-inflammatory 296 

activity. One limitation with cell culture studies is that bioactives supplemented are directly bioavailable to cells while 297 

for example in the case of ACNs they are poorly absorbed in vivo, and extensively metabolized by hepatic enzymes and 298 

microbiota to several other compounds (i.e. aglycones, metabolites/breakdown products, methylated, sulfated and 299 

glucuronidated compounds) with potential different biological activity. Thus, it is plausible that the metabolic effects 300 

attributed to ACNs may be due to their metabolites and not to their native form. This latter observation is perfectly in line 301 

with our results with low and realistic concentrations of ACN-metabolites. In fact, while Dp-3-glc did not show any 302 

capability to reduce the adhesion of monocytes to HUVECs, GA was able to counteract this process. However, the absence 303 
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of data regarding the absoprtion of ACNs and metabolites into cells may be considered a further limitation of the study. 304 

Another limitation is that we did not evaluate the effects of ACNs and derivaties in co-cultures. The drawback of the co-305 

culture system with HUVECs and THP-1 cells is that specific effects to the endothelial cells are obscured by parallel 306 

effects in macrophages.  307 

In conclusion, we documented that both ACN- and PA-RF could decrease adhesion of monocytes to HUVECs 308 

following stimulation with a pro-inflammatory agent. This effect was evidenced also at concentrations comparable with 309 

those achievable in vivo. Regarding the effect of the single ACNs and their metabolites, the results are mixed and 310 

compound dependent. Further studies are necessary to investigate the mechanisms of action of these molecules and clarify 311 

the role of each single compound in the prevention/exacerbation of the inflammatory process.  312 
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Figure 1- HUVECs viability as indicated by the trypan blue exclusion assay (A) and MTT assay (B). Data are reported 458 

as percentage of viability with respect to the control cells without TNF-α (NO TNF-α). Trypan blue and MTT assay were 459 

performed in two different experiments in triplicates. Results are expressed as mean ± standard error of the mean. TNF-460 

α: tumor necrosis factor α, ACN-RF: anthocyanin-rich fraction, PA-RF: phenolic-rich fraction, Dp-3-glc: delphinidin-3-461 

glc, Mv-3-glc: malvidin-3-glucoside, Cy-3-glc: cyanidin-3-glucoside, GA: gallic acid, SA: syringic acid, PrA: 462 

protocatechuic acid, NO TNF-α: control, Triton X-100: positive control. 463 

Concentration ACN-RF (18.9 μM, expressed as Mv-3-glc, the main compound); PA-RF (28.2 μM, expressed as 464 

chlorogenic acid, the main compound); Mv-3-glc (18.9 μM); Dp-3-glc (19.9 μM); Cy-3-glc (20.6 μM); SA (50.5 μM); 465 

GA (58.8 μM); PrA (64.9 μM). *Significantly different (p<0.0001) compared to other treatments. 466 

Figure 2- Effect of ACN-RF (2a) and PA-RF (2b) on THP-1 adhesion to HUVECs. Data are reported as fold increase in 467 

monocytes adhesion with respect to the control cells without TNF-α. Data derived from three different experiments and 468 

each concentration tested in quintuplicate. Results are expressed as mean ± standard error of mean. TNF-α: tumor necrosis 469 

factor α, ACN-RF: anthocyanin-rich fraction, PA-RF: phenolic-rich fraction, NO TNF-α: control.  470 

a,b,cData with different letters are significantly different (p ≤ 0.05). Concentration range between 0.02 and 18.9 μM, 471 

expressed as Mv-3-glc (the main compound) for ACN-RF and concentration range between 0.02 and 28.2 μM, expressed 472 

as chlorogenic acid (the main compound) for PA-RF. 473 

Figure 3- Effect of the single ACNs on THP-1 adhesion to HUVECs. A) Cy-3-glc, B) Dp-3-glc, and C) Mv-3-glc. Data 474 

are reported as fold increase in monocytes adhesion with respect to the control cells without TNF-α. Data derived from 475 

three different experiments and each concentration tested in quintuplicate. Results are expressed as mean ± standard error 476 

of mean. FA: fatty acids, Mv-3-glc: malvidin-3-glucoside, Dp-3-glc: delphinidin-3-glc, Cy-3-glc: cyanidin-3-glucoside, 477 

TNF-α: tumor necrosis factor alpha, NO TNF-α: control.   478 

a,b,cData with different letters are significantly different (p ≤ 0.05). Concentration range: 0.02–20.6 μM for Cy-3-glc, 0.02–479 

19.9 μM for Dp-3-glc and 0.02-18.9 μM for Mv-3-glc 480 

Figure 4- Effect of the single ACN metabolites on THP-1 adhesion to HUVECs. A) GA, B) SA and C) PrA. Data are 481 

reported as fold increase in monocytes adhesion with respect to the control cells without TNF-α. Data derived from three 482 

different experiments and each concentration tested in quintuplicate. Results are expressed as mean ± standard error of 483 

mean. FA: fatty acids, GA: gallic acid, SA: syringic acid, PrA: protocatechuic acid, TNF-α: tumor necrosis factor alpha, 484 

NO TNF-α: control.  a,b,cData with different letters are significantly different (p ≤ 0.05). Concentration range: 0.05–58.8 485 

μM for GA, 0.05-50.5 μM for SA and 0.06–64.9 μM for PrA. 486 


