240 research outputs found

    Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2 coverage area

    Get PDF
    Porous alumina masks are fabricated by anodization of aluminum films grown on both semiconducting and insulating substrates. For these self-assembled alumina masks, pore diameters and periodicities within the ranges of 10–130 and 20–200nm, respectively, can be controlled by varying anodization conditions. 20nm periodicities correspond to pore densities in excess of 1012 per square inch, close to the holy grail of media with 1Tbit∕in.2 density. With these alumina masks, ordered sub-100-nm planar ferromagnetic nanodot arrays covering over 1cm2 were fabricated by electron beam evaporation and subsequent mask lift-off. Moreover, exchange-biased bilayer nanodots were fabricated using argon-ion milling. The average dot diameter and periodicity are tuned between 25 and 130nm and between 45 and 200nm, respectively. Quantitative analyses of scanning electron microscopy (SEM) images of pore and dot arrays show a high degree of hexagonal ordering and narrow size distributions. The dot periodicity obtained from grazi..

    Vortex core size in interacting cylindrical nanodot arrays

    Full text link
    The effect of dipolar interactions among cylindrical nanodots, with a vortex-core magnetic configuration, is analyzed by means of analytical calculations. The cylinders are placed in a N x N square array in two configurations - core oriented parallel to each other and with antiparallel alignment between nearest neighbors. Results comprise the variation in the core radius with the number of interacting dots, the distance between them and dot height. The dipolar interdot coupling leads to a decrease (increase) of the core radius for parallel (antiparallel) arrays

    Analysis of X-ray whispering gallery waves propagating along liquid meniscuses

    Get PDF
    X-ray diffraction and fluorescence of whispering galleries (WGs) which propagate along meniscuses of deionized water or silicahydrosols enriched by CsOH have been analyzed for the first time. The measurements have been performed using the diffractometer with a moving tube-detector system. The X-ray beam rotation angle reached a maximum value of 4° on a silica hydrosol sample. The WG mode propagating near the surface of a concave meniscus as well as the fluorescence intensity have been found from a solution of the respective Helmholtz equations. For analysis of intensities of the X-ray scattering and fluorescence we have used a two-layer model of the liquid with the upper non-uniform corrugated layer in which the concentration of levitating Cs+ ions near the surface has a maximum derived from the experiment in the hydrosol depth of ~ 15 nm for SiO2particle sizes of ~ 5...7 nm. In order to determine the fluorescence intensity we have used the approach based on a method of fundamental parameters using the reciprocity theorem

    Antiferromagnetic domain size and exchange bias

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org/Using neutron diffraction, we measured the sizes of antiferromagnetic domains in three ferromagnet/antiferromagnet bilayer samples as a function of the magnitude and sign of exchange bias, temperature, and antiferromagnet composition. Neutron-scattering techniques were applied to thin films with masses less than 10 mu g. We found the antiferromagnetic domain size to be consistently small regardless of the exchange bias. For a Co/untwinned single crystalline antiferromagnet (AF)-fluoride bilayer, the antiferromagnetic domain size is comparable to the crystallographic domain size of the AF. For one sample the highest temperature at which the exchange bias was nonzero (i.e., the blocking temperature) was suppressed by similar to 3 K compared to the Neel temperature of the antiferromagnet

    Bi-domain state in the exchange bias system FeF2/Ni

    Full text link
    Independently exchange biased subsystems can coexist in FeF2/Ni bilayers after various field-cooling protocols. We find double hysteresis loops for intermediate cooling fields, while for small or large cooling fields a negatively or positively shifted single loop, respectively, are encountered. Both the subloops and the single loops have the same absolute value of the exchange bias field, mu_0 H_E = 0.09 T. This suggests that the antiferromagnet breaks into two magnetic subsystems with opposite signs but equal magnitude of bias acting on the ferromagnet. In this case the ferromagnet does not experience an average bias from the antiferromagnet but rather two independent subsystems ('bi-domain' state). This idea is confirmed by micromagnetic simulations including the effect of the antiferromagnet. We also present experiments, where thermally activated motion of these antiferromagnetic 'domain' boundaries can be achieved

    Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial

    Full text link
    A new computational technique based on the symbolic description utilizing kneading invariants is proposed and verified for explorations of dynamical and parametric chaos in a few exemplary systems with the Lorenz attractor. The technique allows for uncovering the stunning complexity and universality of bi-parametric structures and detect their organizing centers - codimension-two T-points and separating saddles in the kneading-based scans of the iconic Lorenz equation from hydrodynamics, a normal model from mathematics, and a laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201
    corecore