2 research outputs found
Swedish snuff and incidence of cardiovascular disease. A population-based cohort study
<p>Abstract</p> <p>Background</p> <p>The relationship between smoking and an increased incidence of cardiovascular diseases is well known. Whether smokeless tobacco (snuff) is related to myocardial infarction (MI) or stroke is still controversial. Aim of this study was to explore whether snuff users have an increased incidence of MI or stroke.</p> <p>Methods</p> <p>A total of 16 754 women and 10 473 men (aged 45–73 years), without history of cardiovascular disease (CVD), belonging to the population-based "Malmö Diet and Cancer" study were examined. Incidence of MI and stroke were monitored over 10.3 years.</p> <p>Results</p> <p>Snuff was used by 737 (7.0%) men and 75 (0.4%) women, respectively. Among men, snuff was significantly associated with low occupation level, single civil status, high BMI and with current and former smoking. In women, snuff was associated with lower systolic blood pressure. A total of 964 individuals (3.5%), i.e.544 men (5.3%) and 420 (2.5%) women suffered a MI during the follow-up period. The corresponding numbers of incident stroke cases were 1048, i.e. 553 men (5.3%) and 495 (3.0%) women, respectively. Snuff was not associated with any statistically significant increased risk of MI or stroke in men or women. The relative risks (RR) in male snuff users compared to non-users were 1.05 (95% confidence interval (CI): 0.8–1.4, p = 0.740) for incident MI and 0.97 (0.7–1.4, p = 0.878) for stroke, after taking age and potential confounders into account. In women none of the 420 (2.5%) women who were snuff users had a MI and only one suffered a stroke during the follow-up.</p> <p>Conclusion</p> <p>Several life-style risk factors were more prevalent in snuff-users than in non-users. However, the present study does not support any relationship between snuff and incidence of cardiovascular disease in men.</p
Miniaturized wireless water content and conductivity soil sensor system
Obtaining more data for the research/studies of plants growing may be easier realized when suitable non-destructive detection methods are available. We are here presenting the development of a miniaturised, low-power, real-time, multi-parameter and cost-effective sensor for measurements in mini plugs (growth of seedling). The detection technique is based on measurement of electrical impedance at two frequencies for sensing two soil parameters, water content and water conductivity (dependent on e.g. total ions concentration). Electrical models were developed and comply with data at two frequencies. An easy and efficient calibration method for the sensor is established by using known liquids\u2019 properties instead of various soil types. The measurements show a good correlation between the sensor's readings and the traditional soil testing. This soil sensor can easily send data wirelessly allowing for spot checks of substrate moisture levels throughout a greenhouse/field, and/or enable sensors to be buried inside the soil/substrate for long-term consecutive measurements